

GROOVED PIPING PRODUCTS

FIRE PROTECTION PIPING SOLUTIONS

TABLE OF CONTENTS

General Information		Pipe Preparation
General Note Rigid and Flexible coupling Design features Rubber gasket Data chart note	1 2 3 4 6	Gasket Lubrication
Grooved Couplings		Piercing the tube 46
Figure 1GS Rigid Coupling Figure 1N Flexible Coupling Figure 1X Angle Pad Coupling Figure 1NH Heavy Duty Flexible Coupling Figure 1NR Reducing Flexible Coupling	09 10 11 12 13	Space requirement for grooved piping
Hole Cut Piping System (Mechanical Tee)		Installation instruction 56
Figure 3G/3J (Grooved & Threaded)Figure 3G/3J (Grooved & Threaded)Figure 3G/3J (Grooved & Threaded)Figure3L Saddle-Let U Bolt Type	16 17 18 19	
Flange Adapter		
Figure 321 Grooved Split FlangeFigure 321A Grooved AdapterFigure 321A Universal Grooved Adapter	21 22 23	
Grooved Fittings		
Figure 90 STD 90° Elbow Figure 130 STD Equal Tee Figure 180 STD Cross Tee Figure 90S S/R 90° Elbow Figure 130S S/R Equal Tee Figure 180S S/R Cross Tee Figure 120 45° Elbow Figure 130 22.5° Elbow Figure 180 11.25° Elbow Figure 131/131N Red.Tee(Grooved & Threaded) Figure 131/131N Red.Tee(Grooved & Threaded) Figure 240/240N Con. Reducer(Gvd & Thrd) Figure 240/240N Con.Reducer(Gvd & Thrd) Figure 230/230N Ecc.Reducer(Gvd & Thrd) Figure 230/230N Ecc.Reducer(Gvd & Thrd) Figure 300 End Cap	25 25 25 26 26 26 27 27 27 28 29 30 31 32 33 34	
Figure 300 End Cap with Center HoleFigure 300 End Cap With Ecc. HoleFigure 1N/1NH Expansion Joint	34 34 35	Refer to our Grooved Piping Products Handbook for detailed

36

Adapter Nipple-----

installation instructions

GENERAL INFORMATION

General Notes

Ductile iron was first invented in the U.S.A. and U.K. in the late 1940's. Superior strength was achieved by crystallizing graphite in the shape of nodules. The result was ductile iron that had tensile and yield strength properties that were equal to or greater than some steel castings. This superior strength combined with ductile irons excellent cast ability helped to reduce the weight and cost of many components. Because of these advantages and benefits, many components have been converted from gray iron, malleable iron and steel castings to ductile iron over the past 50 years

Ductile iron is an ideal material for grooved mechanical components, as it provides similar or greater strength to that of wrought or cast steel piping materials most Wingrou components are made of ductile iron conforming to ASTM A536 Gr. 65-45-12 and or ASTM A395 Gr. 65-45-15

ASTM A536, Grade 65-45-12

Requirements*	Minimum	Maximum
Carbon, %	3.0	3.9
Silicon, %	2.5	3.0
Manganese, %	0.1	0.4
Phosphorus, %		0.07
Sulfur, %		0.02
Magnesium, %	0.03	0.05
Chromium, %		0.1
Physical Properties		
Tensile strength, psi (MPa)	65,000 (448)	
Yield strength, psi (MPa)	45,000 (310)	
Elongation, %	12	

^{*}Reference only as chemical requirements are not specified in ASTM A536.

ASTM A395, Grade 65-45-15 (UNS F33100)

Chemical Requirements	Minimum	Maximum
Carbon, %	3.0	
Silicon, %		2.5
Manganese, %	Not specified	
Phosphorus, %		0.08
Sulfur, %	Not specified	
Magnesium, %	Not specified	
Chromium, %	Not specified	
Physical Properties		
Tensile strength, psi (MPa)	65,000 (448)	
Yield strength, psi (MPa)	45,000 (310)	
Elongation, %	15	

Grooved Pipe Joining Technology

How does it work?

The groove is cold formed or machined into the pipe end using a grooving tool. The coupling housings, fully surrounding a gasket, are assembled around two grooved pipe ends, and the key sections of the housings engage into the grooves. The bolts and nuts are tightened with a socket wrench or impact wrench.

Types of grooved couplings

Flexible coupling – allows for controlled linear and angular movement, which accommodates pipeline deflection as well as thermal expansion and contraction.

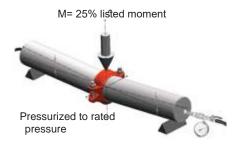
Rigid coupling – does not allow for movement, similar to a flanged or welded joint.

- Always read and understand all Wingrou products installation instructions before installing any Wingrou product. To avoid serious personal injury, wear safety glasses, hard hat and foot protection.
- Always depressurize and drain the piping system before attempting disassembly, adjustment or removal of any piping components.
- Designers must know and understand all relevant building and or piping standards, codes and specifications. It is the responsibility of the designer to select and or specify the appropriate product for the intended use and service.
- Always refer to the maximum pressure rating and service temperature range allowed for Wingrou products and ensure that they are used within these parameters.
- Special attention is required for selection of suitable gasket grades for the intended service application.
- 6. All information and data contained herein supersede all previous published data. Wingrou reserves the right to change product designs and or specifications without notice and or obligation. Please refer to the Wingrou website for the latest information.

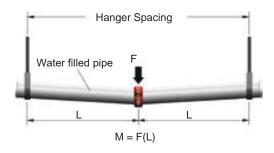
Typical Applications

email: info@wingrou.co.uk / info@wingrou.com

HVAC	Air
Fire Protection	Desalination
Water Supply & Treatment	Mining & Tunnel Boring
Plumbing	Marine
Municipal	Gas
Food Processing	Chemical
Pulp & Paper	Oil
Agriculture	


GENERAL INFORMATION

Rigid & Flexible Couplings


Grooved mechanical couplings are available in both rigid and flexible models. A rigid coupling is used in applications where a rigid joint is desired, similar to that of a traditional flanged, welded, and or threaded con nection. To be considered rigid, a coupling would allow less than one degree of deflection or angular movement

Rigidity Proof Test: Rigidity proof testing is conducted by applying 25% of the listed mo ment to the test assembly which is internally pressurized to the rated pressure.

Definition: Grooved couplings are subjected to internal pressures and exterior bending forces during service. ASTM F1476- 07 defines a rigid coupling as a joint where there is essentially no available free angular or axial pipe movement and a flexible coupling as a joint wherein there is available limited angular and axial pipe movement.

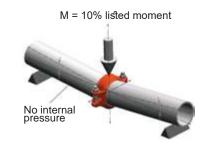
Bending Moment : Test bending moments are calculated by the equation M = F(L), where F is weight of water filled pipe (Lbs) and L is hanger spacing x 1/2 (feet). The table below shows test bending moments calculated using sch. 40 pipe with NFPA 13 hanger spacing.

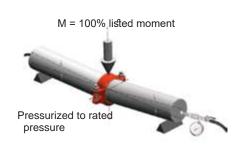
Style 1N Flexible Coupling

Flexible couplings are designed to accommodate axial displacement, rotation and a minimum one degree of angular movement. Flexible couplings are used in applications that call for curved or deflected layouts and or when systems are exposed to outside forces beyond normal static conditions, such as seismic events or where vibration and or noise attenuation are a concern.

Test Bending Moment (ASTM F1476)

Nom. Size	Moment	Moment
	Nm	Lbs-Ft
11/2	549	405
2	780	575
21/2	1200	885
3	1645	1213
4	2471	1823
5	3551	2619
6	4803	3543
8	7663	5652
10	11379	8393
12	15558	11475
14	18609	13725
16	24299	17922


Rigid Coupling - Max. Deflection


Nom. Size	θ, max	θ, max.
(inches)	(minutes)	(degrees)
11/2	57	0.95
2	56	0.93
2½	55	0.92
3	54	0.90
4	52	0.87
5	50	0.83
6	48	0.80
8	44	0.73
10	40	0.67
12	36	0.60
14	32	0.53
16	28	0.47

The rigid coupling shall pass the test when the angle has not changed more than angle θ . θ shall be calculated as follows: θ° 60(minutes) – [2' (minutes) x (nominal pipe size in inches)]. In other words, when θ is less than 1 degree (60 minutes), the grooved mechanical coupling is verified as a rigid coupling and when θ is more than 1 degree (60 minutes), the GMC is regarded as a coupling and when θ is more than 1 degree (60 minutes), the GMC is regarded as a flexible coupling. The maximum angles θ for rigid couplings are shown in the table below:

Flexibility Proof Test

Flexibility proof testing is conducted by applying a small bending moment, 10% of the listed moment, to the test assembly with no internal pressure. A 4" model 1N flexible coupling deflects 3 – 4 degrees depending on the type of groove processed.

www.wingrou.com email: info@wingrou.co.uk / info@wingrou.com

NFPA 13 defines a FLEXIBLE COUPLING as;

"a listed coupling or fitting that allow axial displacement,

rotation, and at least 1 degree of angular movement of the pipe without inducing harm on the pipe. For pipe diameters of 8 in. and larger, the angular movement shall be permitted to be less than 1 degree but not less than 0.5 degrees." (NFPA 13-2007 3.5.4)

For sprinkler systems, NFPA 13 specifies the use of flexible couplings to protect the system against damage from earthquakes and sets some specific examples of how and where they should be used.

Designers and installers should design their fire protection systems in compliance with this standard.

Axial Displacement & Angular Movement (Models IN & 1NH)

			ı	,						
Si	ize	Axial Displacemen	_	Movement ction		Size		Axial Displacement	Angular M (Defle	
Nom.Size mm/in	Actual OD mm/in	mm/in	Per coupling degrees	Per pipe mm/m, in/ft		Nom.Size mm/in	Actual OD mm/in	mm/in	Per coupling degrees	Per pipe mm/m, in/ft
20	26.7	1.6	6°-46	118		150	159.0	3.2	2°-18́	40
0.75	1.050	0.0625	0 -40	1.42		6	6.250	0.125	2 -10	0.48
25	33.4	1.6	5°-30	96		150	165.1	3.2	2°-14	39
1	1.315	0.0625	5 -50	1.16		6	6.500	0.125	2 -14	0.47
32	42.4	1.6	4°-20	76		150	168.3	3.2	2°-10	38
1.25	1.660	0.0625	4 -20	0.91		6	6.625	0.125	2 -10	0.45
40	48.3	1.6	3°-48́	66		200 JIS	216.3	3.2	1°-42	30
1.5	1.900	0.0625	3 -40	0.80		8	8.516	0.125	1 -42	0.36
50	60.3	1.6	3°-01′	53		200	219.1	3.2	1°-40´	29
2	2.375	0.0625	3 -01	0.63		8	8.625	0.125	1 -40	0.35
65	73	1.6	2°-30	44		250 JIS	267.4	3.2	1°-22	24
2.5	2.875	0.0625	2 -30	0.52		10	10.528	0.125	1 -22	0.29
65	76.1	1.6	2°-24	42		250	273.0	3.2	1°-20	23
2.5	3.000	0.0625	2 -24	0.50		10	10.750	0.125	1 -20	0.28
80	88.9	1.6	2°-04	36		300 JIS	318.5	3.2	1°-10	20
3	3.500	0.0625	2 04	0.43		12	12.539	0.125	1 -10	0.25
90	1016	1.6	1°-48	31		300	323.9	3.2	1°-08	20
3.5	4.000	0.0625	1 -40	0.38		12	12.750	0.125	1 -00	0.24
100	108.0	3.2	3°-24	59.0		350	355.6	3.2	1°-02	18
4	4.25	0.125	3 24	0.71		14	14.000	0.125	1 02	0.22
100	114.3	3.2	3°-12	55		400	406.4	3.2	0°-54	16
4	4.500	0.125	J -12	0.67		16	16.000	0.125	0 04	0.19
125	127.0	3.2	2°-53	50.0		450	457.0	3.2	0°-48́	14
5	5.000	0.125	2 33	0.60		18	18.000	0.125	0 40	0.17
125	133	3.2	2°-46	48		500	508.0	3.2	0°-44	13
5	5.250	0.125	2 -40	0.58		20	20.000	0.125	0 -44	0.15
125	139.7	3.2	2°-37	46		550	559.0	3.2	0°-38	11
5	5.500	0.125	2 -31	0.55		22	22.000	0.125	0 -30	0.13
125	141.3	3.2	2°-36	45		600	610.0	3.2	0°-36	10
5	5.563	0.125	2 -30	0.54		24	24.000	0.125	0 -30	0.13

Note: Axial displacement is the maximum value when the system is pressurized to the maximum working pressure. Angular movement is the maximum value that a coupling allows under no internal pressure.

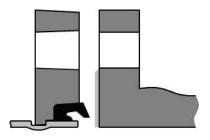
Rubber Gasket

Wingrou gaskets are designed to provide life-of the-system service in a wide variety of applications. Gasket materials are available to meet most piping applications.

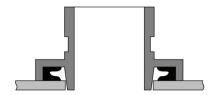
Couplings Gasket Type

Standard C type:

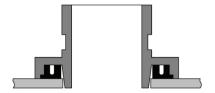
Usually with grooved fittings. 1GS, 1X, 1N, 1NH, such as no special requirements are supporting this type of rubber seals


E type:

Usually with grooved fittings. 1GS, 1X, 1N, 1NH can be matched with this type of rubber seal


Reducing type:

Usually with grooved reducing fitting. 1NR supporting this type of rubber ring.


Flange type:

321-type slip flange are matched with this type of rubber ring

Opening reaction type:

3G, 3J are optional matching this type of rubber ring

Hole labyrinth type:

3G, 3J are optional matching this type of rubber ring

Rubber Gasket Materials

As elastomer technology advanced, superior gasket materials became available and were added to the Wingrou line. This allows Wingrou to presently offer a variety of synthetic rubber gaskets to provide the option of selecting Wingrou products for the widest variety of applications.

For most water system piping applications, Wingrou grade EPDM rubber is recommended. Wingrou E-grade rubber gasket material with excellent performance in anti-aging and heat resistance, the material at 125OC (257OF) temperature, the material for hot air aging test, the physical properties of the basic unchanged. When the rubber in a non-air environment, such as water piping system, its anti-aging properties will be further strengthened. Since water has no deteriorating effect on the elastomer, temperature is the only limiting factor to be considered in determining the life expectancy of the elastomer in water service. The superior performance of the Grade "E" elastomer permits its use for hot water service up to +230°F/+110°C. The Grade "E" gasket is superior to previous gasket materials by all performance barometers, including high and low temperature limits, tensile strength, chemical resistance and shelf life

Rubber Gasket Data

To assure the maximum life for the service intended, proper gasket selection and specification in ordering is essential. Many factors must be considered in determining the optimum gasket for a specific service. The foremost consideration is temperature, along with concentration of product, duration of service and continuity of service. Temperatures beyond the recommended limits have a degrading effect on the polymer. Therefore, there is a direct relationship between temperature, continuity of service and gasket life. Services listed are General Service Recommendations only. It should be noted that there are services for which these gaskets are not recommended. For a list of applicationspecific and non-recommended application recommendations, reference should be made to the latest selection guide for seals. The use of gasket only for the selection of rubber materials in the product, does not involve the selection of metal shell, fittings and bolts and nuts. For the housing, accessories and bolts and nuts selection, should be selected according to the actual application environment

Rubber Gasket Selecton Guide

Grade	Temperature Range	Rubber Compound	Color Code	General Service Recomm endations
E	-30°F to +230°F -34°C to +110°C	EPDM	Green Stripe	Recommended for hot water service within the specified emperature range plus a variety of dilute acids, oil-free air and many chemical services. UL classified in a cordance with ANSI/NSF 61 for cold +86°F/+30°C and hot +180°F/+82°C potable water service. NOT RECOMMENDED FOR PETROLEUM SERVICES.
Т	-20°F to+180°F -29°C to +82°C	Nitrile	Orange Stripe	Recommended for petroleum products, hydrocarbons, air with oil vapors, vegetable and mineral oils within the specified emperature range; except hot dry air over +140°F/+60°C and water over +150°F/+66°C. NOT RECOMMENDED FOR HOT WATER SERVICES
0	-20°F to +300°F -29°C to +149°C	Fluoroelasto mer	r h Stripe h	Recommended for many oxidizing acids, petroleum oils, halogenated hydrocarbons, lubricants, hydraulic fluid, organic liquids and air with hydrocarbons to +300°F/+149°C
L	-30°F to +350°F -34°C to +177°C	Silicone	Body White	Recommended for dry heat, air without hydrocarbons to +350°F/ +177°C and certain chemical services.
V	-30°F to +180°F -34°C to +82°C	Neoprene	Yellow Stripe	Recommended for hot lubricating oils and certain chemicals. Good oxidation

Warning

To ensure that the rubber seal in the application of the longest life expectancy, the correct choice when ordering rubber seal material and specifictions are the most basic requirements. Failure to select the right rubber seal material can result in personal injury or property damage, joint leakage, or connection failure.

Nitrile Orange Stripe

email: info@wingrou.co.uk / info@wingrou.com

White Stripe

GENERAL INFORMATION

Data Chart Notes

Nominal Size mm/in	Pipe O.D. mm/in	Max.Working Pressure Bar/PSI	Max.End Load kN/Lbs	Axial Displacement mm/in	Angular Movement Degree Per Pipe Coupling(°) mm/m in/ ft		Degree Per Pipe X Y Z		7	Bolt Size in	Bolt Torque N-m/Lbs-Ft
1	2	3	4	5	6		_	7		8	9

01.Nominal Size:

Wingrou couplings and fittings are identified by the nominal IPS pipe size in inches or nominal diameter of pipe (DN) in millimeters. Refer to the chart on the next page which shows a comparison between typical metric and IPS pipe sizes

02. Pipe O.D.:

Actual outside diameter of pipe in inches and millimeters.

03. Maximum Working Pressure (CWP):

Maximum working

pressures listed are CWP (cold water pressure) or maximum allowed working pressure within the service temperature range of the gasket used in the coupling, based on standard wall or sch. 40 steel pipe, cut or roll-grooved to ANSI/AWWA C606 (latest edition) specifications and tested to ASTM F1476. Burst test pressures are minimum 3 times the maximum working pressures unless otherwise specified.

These ratings may occasionally differ from maximum working pressures listed and/or approved by UL, ULC, and/or FM as testing conditions and test pipes differ. For performance data on other pipe schedules contact Wingrou.

Note: For one time field test only the maximum joint working pressure may be increased 1½ times the figures shown.

04. Maximum End Load:

Maximum end loads listed are total of internal and external forces to which the joint can be subjected, based on standard wall or sch. 40 steel pipe, cut or roll-grooved to ANSI/AWWA C606 (latest edition) specifications.

Nominal Size / Pipe O.D.

While Wingrou fittings are normally identified by the nominal size, always check the actual O.D. of the pipe and fittings to be connected, as in some markets it is customary to refer to different O.D. pipes with the same nominal size. For example: The nominal size 65 (2½") is referred to 73.0 mm (2.875") pipe O.D. in IPS and 76.1 mm (3.000") pipe O.D. in BS, ISO or JIS pipes. Refer to pipe & tubing standards for details.

05. Axial Displacement:

Designed range of the gap between pipe ends based on roll grooved pipe.

06. Angular Movement (Deflection):

Allowable Axial Displacement and

Angular Movement (deflection) figures are for roll grooved standard steel pipe. Values for cut grooved pipe will be double that of roll grooved. These values are maximums; for design and installation purposes these figures should be reduced by: 50% for 3/2"/DN20 – 3/2"/DN90; 25% for 4"/DN100 and larger to compensate for jobsite conditions. Maximum allowable deflection of pipe from centerline when the joint is used with cut or roll-grooved steel pipe under no internal pressure.

07. Dimensions:

"X", "Y", "Z" and so on are external dimensions for reference purpose only in inches and millimeters.

08. Bolt Size:

UNC bolt size and length in inches and ISO metric bolt size and length in millimeters with numbers of bolts where applicable.

09. Bolt Torque:

Recommended bolt fastening torque in Nm and Lbs-F

10. Weight:

Weight of a coupling complete with gasket, bolts and nuts or of a fitting in kilograms and pounds.

GENERAL CODES, STANDARDS, SPECIFICATIONS, ASSOCIATIONS & APPROVAL BODIES

AFSA) American Fire Sprinkler Association

(CASA) Canadian Automatic Sprinkler Association

(FM) Factory Mutual Research Corp.

(UL) Underwriter's Laboratories, Inc

(ULC) Underwriter's Laboratories of Canada

(NFPA) National Fire Protection Association NFPA 13

(NFSA) National Fire Sprinkler Association, Inc.

(ANSI) American National Standards Institute B36.10 & B36.19

(AWWA) American Water Works Association

(API) American Petroleum Institute API 5L

(ASTM) American Society of Testing and Materials A135, A795 &

B88 (BS) British Standards BS1387, BS3600, BS3601 & BS3605

(ISO) International Standard Organization 65 & 4200

(JIS) Japan Industrial Standard G3452 & G3459

(FESC) Japan Fire Equipment Safety Center

(CSA) Canadian Standards Association B-242

(NYPA) New York Power Authority

HOUSING

Wingrou Coupling Housings are made of Ductile Iron confirming to ASTM A 536 Gr. 65-45-12 Ductile iron is an ideal material for grooved mechanical components, as it provides similar or greater strength to that of wrought or cast steel materials

Chemical Properties

Percent	Carbon	Silicon	Manganese	Phosphorous	Sulphur	Magnesium	Chromium
(%)	C	Si	Mn	P	S	Mg	Cr
Min - Max	3% - 3.9%	2.5% - 3.2%	0.1% - 0.4%	0% - 0.07%	0% - 0.03%	0.03% - 0.06%	

Physical Properties

Minimum Tensile Strength	Minimum Yield Strength	Minimum Elongation (%)		
448 MPa	310 MPa	12		
65,000 PSI	45,000 PSI	12		

GASKETS

Wingrou Gaskets are made with EPDM rubber compound confirming to ASTM D2000 with properties equal or greater to required as per AWWA C606.

EPDM gaskets are suitable for water, waste water, sea water and deionized water.

EPDM gaskets are not suitable for petroleum based oils, fuels and hydrocarbon solvents.

Physical Properties

Green Stripe Grade "F"

Material	Colour Code	Shore Hardness	Maximum Specific Gravity	Maximum Ash Content	Minimum Tensile Strength	Minimum Elongation %	Minimum Heat Aging Test
EPDM	Green Mark	65 ± 5	1.1%	5%	10.34 MPa 1500 PSI	300%	136°C for 168 Hrs. 277°F for 168 Hrs

BOLTS AND NUTS

Ovel neck track bolt confirming to ASTM A183 with minimum tensile strength of 110,000 psi or square neck carriage bolt to ASTM A446 with 120,000 psi minimum tensile strength permits tightening of the nuts from one side with a single wrench. Nuts conform to ASTM A194, Bot and Nuts are electro galvanized.

Chemical & Physical Properties of Bolts

Carbon	Phosphorous	Sulphur	Chromium	Tensile	Yield	Elongation
C	P	S	Cr	Strength	Strength	%
0.3% Min.	0.05% Max	0.06% Max	0% - 0.1%	760 MPa 110,000 PSI	550 Mpa 80,000 PSI	

User Responsibility for Product Selection and Suitability

Each user bears final responsibility for making a determination as to the suitability of Wingrou products for a particular end-use application, in accordance with industry standards and project specifications, and the applicable building codes and related regulations as well as Wingrou performance, maintenance, safety, and warning instructions. Nothing in this or any other document, nor any verbal recom-mendation, advice, or opinion from any Wingrou employee, shall be deemed to alter, vary, supersede, or waive any provision of Allied Rubber and Gasket Company's standard conditions of sale, installation guide, or this disclaimer

INSTALLATION INSTRUCTIONS:

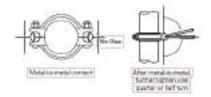
- 01. Remove one nut and bolt from housing loosen the other nu until it is flush with the end of the bolt. Remove the gasket from the housing.
- 02. Check suitability of gasket for intended service and apply a thin coat of silicone or other compatible pipe lubricant to gasket lips and outside of the gasket, if the gasket surface does not have lubricity
- 03. Insert ans push the gasket over one of the grooved ends of the two pipes to be loined. Gasket lip should not overhang pipe end.
- 04. Align and bring the pipes end together and side gasket into position entered between the grooves on each pipe. Gasket should should not extend into groove on either pipe.
- 05. Place housings over gasket and apply pressure by hands to engage the keys into the grooves. Insert bolt and apply nuts finger tight. Make sure on Style 1GS the tonge and groove match to avoid product failure.
- 06. Tighten nuts alternately and equally until housing bolts pads are firmly together metal-to-metal. Uneven tightening will pinch the gasket. On style 1GS there may be slight gap at bolt pads.

WARNING: Depressurize and drain the piping system before attempting to install, remove, or adjust any piping products. Wear safety glasses, hardhat, and foot protection.

Torque Value

When a torque value is specified or coupling installation, this torque must be applied to the nuts in order to achieve proper installation, however torque beyond specified values will not improve sealing. Exceeding the specified torque by more than 25% may cause damage to the product, resulting in pipe-joint failure.

SPECIFIED TORQUE (LB/FT.)


SIZE	MIN	MAX
1"	30	45
1-1/4"	30	45
1-1/2"	30	45
2"	80	100
2-1/2"	80	100
3"	80	100
3-1/2"	100	130
4"	100	130

Helpful Information to Ensure Proper Assembly

Some couplings and components require the housing bolt pads to make metal-to-metal contact for proper assembly, while others require a specific bolt torque while maintaining equal bolt pad gaps. The icons and information below will help to identify those items to ensure proper assembly. Read and follow all installation instructions for the component being installed. Metal-to-metal contact: Tighten bolts and nuts until bolt pads make metal-to-metal contact. After metal-to-metal contact is achieved, tighten nuts by another one quarter or one half turn to make sure the bolts and nuts are snug and secure. No torque wrench is required. Excessive torque may lead to bolt or joint failure.

Torque required! Bolts and nuts must always be tightened to the required torque by using a torque wrench. Normally there will be some gaps seen between the bolt pads after the bolts and nuts are fully tightened. Bolt pad gaps should be equal on both sides of the coupling.

RIGID COUPLING

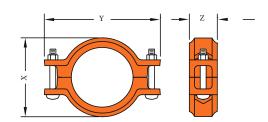
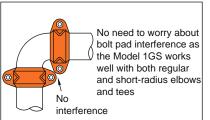


Figure-1GS


Wingrou Model 1GS is a T&G (tongue & groove) design rigid coupling for moderate pressure applications where rigidity is required including valve connections, mechanical rooms, fire mains and long straight runs. The built-in teeth and T&G mechanism firmly grasp the pipe ends to eliminate undesired flex

Support and hanging requirements correspond to ANSI B31.1, B31.9 and NFPA 13.

Fitting Coating:

RAL 3000 Red paint in Europe,Middle East, Africa, and India. Orange enamel in USA Optional: Hot dipped galvanized.

	Siz	e	Max. Work	Max. End	Allow. Pipe		Dimension		Bolt/Nut	Approx.
	Nominal Dia	Actual O.D.	Pressure	Load	End Sep.	Х	Υ	Z	Size	Wgt. Each
Part No.	DN	mm	KPa	N	mm	mm	mm	mm	mm	kg
	Inches	Inches	PSI	Lbs.	Inches	Inches	Inches	Inches	Inches	Lbs.
WC1CC100	25	33.4	5170	4530	2.3	54	98	44	M10X50	0.55
WG1GS100	1	1.315	750	1020	0.091	2.126	3.858	1.732	3/ ₈ X2	1.21
WG1GS125	32	42.4	5170	7300	2.3	63	109	44	M10X50	0.58
WG1G3123	11/4	1.660	750	1620	0.091	2.480	4.291	1.732	3/ ₈ X2	1.28
WG1GS150	40	48.3	5170	9470	2.3	69	115	44	M10X50	0.60
	11/2	1.900	750	2130	0.091	2.717	4.528	1.732	3/ ₈ X2	1.32
	50	60.3	4140	11820	2.3	83	128	45	M10X50	0.71
WG1GS200	2	2.375	600	2660	0.091	3.268	5.039	1.772	³/ ₈ X2	1.56
WG1GS250	65	73.0	3780	15820	2.3	97	142	46	M10X55	0.98
110103230	21/2	2.875	550	3570	0.091	3.819	5.591	1.811	3/ ₈ X2 ¹ / ₄	2.16
WG1GS290	65	76.1	3780	17190	2.3	100	145	46	M10X55	0.97
WGTG3290	21/2	3.000	550	3890	0.091	3.937	5.709	1.811	3/ ₈ X2 ¹ / ₄	2.13
WG1GS300	80	88.9	3780	23460	2.7	113	159	47	M10X55	1.10
	3	3.500	550	5290	0.106	4.449	6.260	1.850	3/ ₈ X2 ¹ / ₄	2.42
	100	108.0	3450	31610	2.7	136	192	49	M12X70	1.44
WG1GS410	4	4.250	500	7090	0.106	5.354	7.559	1.929	1/2X23/4	3.17
WG1GS400	100	114.3	3450	35400	2.7	142	198	49	M12X70	1.54
WG1G5100	4	4.500	500	7950	0.106	5.591	7.795	1.929	1/2X23/4	3.39
WG1GS510	125	133.0	3450	47930	2.7	163	224	50	M16X85	1.95
WG1G3310	5	5.250	500	10820	0.106	6.417	8.819	1.969	⁵ / ₈ X3 ³ / ₈	4.30
WG1GS511	125	139.7	3450	52880	2.7	169	230	50	M16X85	2.00
WGIGSSII	5	5.500	500	11880	0.106	6.654	9.055	1.969	5/ ₈ X3 ³ / ₈	4.41
WG1GS500	125	141.3	3450	54100	2.7	171	232	50	M16X85	2.02
WG1G3300	5	5.563	500	12150	0.106	6.732	9.134	1.969	⁵ / ₈ X3 ³ / ₈	4.45
WG1GS601	150	159.0	3450	68500	2.7	190	249	51	M16X85	2.20
Walasooi	6	6.250	500	15340	0.106	7.480	9.803	2.008	5/ ₈ X3 ³ / ₈	4.85
WG1GS650	150	165.1	3450	73860	2.7	196	254	51	M16X85	2.26
	6	6.500	500	16590	0.106	7.717	10.000	2.008	⁵ / ₈ X3 ³ / ₈	4.98
WG1GS600	150	168.3	3450	76750	2.7	199	257	51	M16X85	2.34
WG1G3000	6	6.625	500	17240	0.106	7.835	10.118	2.008	⁵ / ₈ X3 ³ / ₈	5.15
WG1GS800	200	219.1	2750	103680	4.9	256	328	58	M20X115	4.00
	8	8.625	400	23370	0.193	10.079	12.913	2.283	3/ ₄ X4 ¹ / ₂	8.81
	250	273.0	2500	146340	4.9	311	397	59	M22X135	5.17
WG1GS910	10	10.750	350	31770	0.193	12.244	15.630	2.323	⁷ / ₈ X5 ¹ / ₂	11.39
WG1GS912	300	323.9	2500	205990	4.9	365	451	60	M22X135	6.86
VVUIUSYIZ	12	12.750	350	44690	0.193	14.370	17.756	2.362	⁷ / ₈ X5 ¹ / ₂	15.11

- · Working Pressure is based on roll grooved standard wall carbon steel
- Allowable Axial Displacement and Angular Movement (deflection) figures are for roll grooved Standard steel pipe Values for cut grooved pipe will be double that of roll grooved. These values are maximums; for design and installation purposes these figures should be reduced by: 50% for ¾"/DN20 - 3½"/ DN90; 25% for 4"/DN100 and larger to compensate for jobsite conditions.
- Maximum working pressure for the fire protection application, approved pressure by related authorities should be used. UL/ULC 300 Psi 2065 kPa/21bars FM 300Psi 2065kPa/21 Bars

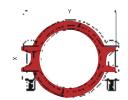

FLEXIBLE COUPLING

Figure-1N

The Figure 1N grooved end flexible couplings are designed to allow for angular or rotational differences between the components being joined after assembly. These couplings provide greater system reliability in situations involving excessive vibration, difficult alignment or seismic activity.

The couplings are made using a Grade 65-45-12 ASTM A536 ductile iron split housing, carbon steel bolts and hex nuts and are sealed at the pipe surface with an EPDM elastomer gasket.

Support and hanging requirements correspond to ANSI B31.1, B31.9 and NFPA 13.

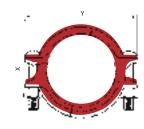
Fitting Coating: RAL 3000 Red paint in Europe, Middle East, Africa, and India.

Orange enamel in USA Optional: Hot dipped galvanized.

	S	ize	Max. Work	Max. End	Allow. Pipe		Dimension:	s	Bolt/Nut	Approx.
D. (M	Nominal Dia.	Actual O.D.	Pressure	Load	End Sep.	Х	Y	Z	Size	Wgt. Each
Part No.	DN	mm	KPa	N	mm	mm	mm	mm	mm	kg
	Inches	Inches	PSI	Lbs.	Inches	Inches	Inches	Inches	Inches	Lbs.
	25	33.4	5170	4530	2.2	53	98	44	M10X50	0.55
WG1N100	1	1.315	750	1020	0.087	2.087	3.858	1.732	3/ ₈ X2	1.21
	32	42.4	5170	7300	2.2	62	110	44	M10X50	0.58
WG1N125	11/4	1.660	750	1620	0.087	2.441	4.331	1.732	³ / ₈ X2	1.28
	40	48.3	5170	9470	2.2	68	115	44	M10X50	0.60
WG1N150	11/2	1.900	750	2130	0.087	2.677	4.528	1.732	³ / ₈ X2	1.32
	50	60.3	4140	11820	2.2	83	130	45	M10X50	0.71
WG1N200	2	2.375	600	2660	0.087	3.268	5.118	1.772	³/ ₈ X2	1.56
	65	73.0	3780	15820	2.4	97	144	46	M10X55	0.90
WG1N250	21/2	2.875	550	3570	0.094	3.819	5.669	1.811	3/ ₈ X2 ¹ / ₄	1.98
	65	76.1	3780	17190	2.4	100	147	46	M10X55	1.00
WG1N290	21/2	3.000	550	3890	0.094	3.937	5.787	1.811	3/ ₈ X2 ¹ / ₄	2.20
	80	88.9	3780	23460	2.8	113	172	47	M10X55	1.11
WG1N300	3	3.500	550	5290	0.110	4.449	6.772	1.850	3/ ₈ X2 ¹ / ₄	2.44
	100	108.0	3450	31610	3.3	136	196	51	M12X70	1.62
WG1N410	4	4.250	500	7090	0.130	5.354	7.717	2.008	1/2X23/4	3.57
WC1N400	100	114.3	3450	35400	3.3	142	202	51	M12X70	1.66
WG1N400	4	4.500	500	7950	0.130	5.591	7.953	2.008	1/2X23/4	3.66
	125	133.0	3450	47930	3.6	166	230	51	M16X85	2.37
WG1N510	5	5.250	500	10820	0.142	6.535	9.055	2.008	5/ ₈ X3 ³ / ₈	5.22
14/541/544	125	139.7	3450	52880	3.6	172	236	51	M16X85	2.42
WG1N511	5	5.500	500	11880	0.142	6.772	9.291	2.008	5/ ₈ X3 ³ / ₈	5.33
WC1NEGO	125	141.3	3450	54100	3.6	174	238	51	M16X85	2.44
WG1N500	5	5.563	500	12150	0.142	6.850	9.370	2.008	5/ ₈ X3 ³ / ₈	5.37
	150	159.0	3450	68500	3.9	190	266	52	M16X85	2.72
WG1N601	6	6.250	500	15340	0.154	7.480	10.472	2.047	5/ ₈ X3 ³ / ₈	5.99
WG1N650	150	165.1	3450	73860	3.9	196	272	52	M16X85	2.78
WG114030	6	6.500	500	16590	0.154	7.717	10.709	2.047	5/8X33/8	6.12
WG1N600	150	168.3	3450	76750	3.9	199	275	52	M16X85	2.83
Wallyood	6	6.625	500	17240	0.154	7.835	10.827	2.047	5/8X33/8	6.23
WG1N800	200	219.1	2750	103680	4.9	256	343	61	M20X115	5.06
WG INOUU	8	8.625	400	23370	0.193	10.079	13.504	2.402	3/ ₄ X4 ¹ / ₂	11.15
	250	273.0	2500	146340	4.9	311	397	61	M22X135	5.91
WG1N910	10	10.750	350	31770	0.193	12.244	15.630	2.402	⁷ / ₈ X5 ¹ / ₂	13.02
WG1N912	300	323.9	2500	205990	4.9	365	451	62	M22X135	7.39
WGINSIZ	12	12.750	350	44690	0.193	14.370	17.756	2.441	⁷ / ₈ X5 ¹ / ₂	16.28

Working Pressure is based on roll grooved standard wall carbon steel pipe.

Allowable Axial Displacement and Angular Movement (deflection) figures are for roll grooved standard steel pipe. Values for cut grooved pipe will be double that of roll grooved. These values are maximums; for design and installation purposes these figures should be reduced by: 50% for %"/DN20 - 3½"/DN90; 25%for 4"/DN100 and larger to compensate for jobsite conditions.



RIGID COUPLING-ANGLE PAD

Figure-1X

The Wingrou Model 1X is an angle –pad design standard rigid coupling for moderate pressure piping services including Fire mains, long straight run and valve connections. This angle pad rigid coupling allows for more accurate positioning of the tube end, forming a fix ed tube end separation, which should be consid-ered the design and installation.

- Unique angle-pad design for rigidity
- Allows supportying/ hanging same as welded or threaded in accordance with NEPA-13 requirements
- For use in fire protection services only
- Reduces installation time up to 60%
- Available with hot dipped galvanized finish
- Pressure rated up to 300psi/2065 kPa

	Si	ize	Max. Work	Max. End	Allow. Pipe	[Dimensions		Bolt/Nut	Approx.
D () I	Nominal Dia.	Actual O.D.	Pressure	Load	End Sep.	Х	Υ	Z	Size	Wgt. Each
Part No.	DN	mm	KPa	N	mm	mm	mm	mm	mm	kg
	Inches	Inches	PSI	Lbs.	Inches	Inches	Inches	Inches	Inches	Lbs.
	25	33.4	5170	4530	2.2	55	98	45	M10X50	0.49
WG1X100	1	1.315	750	1020	0.086	2.165	3.858	1.772	³ / ₈ X2	1.08
	32	42.4	5170	7300	2.2	64	110	45	M10X50	0.58
WG1X125	1 1/4	1.660	750	1620	0.086	2.520	4.331	1.772	³ / ₈ X2	1.28
WG1X150	40	48.3	5170	9470	2.2	70	115	45	M10X50	0.62
WGIXISO	11/2	1.900	750	2130	0.086	2.756	4.528	1.772	³ / ₈ X2	1.37
14/643/200	50	60.3	4140	11820	2.2	85	130	47	M10X50	0.77
WG1X200	2	2.375	600	2660	0.086	3.346	5.118	1.850	³ / ₈ X2	1.70
WG1X250	65	73.0	3780	15820	2.7	100	148	49	M10X55	0.98
WGTX250	21/2	2.875	550	3570	0.106	3.937	5.827	1.929	³ / ₈ X2 ¹ / ₄	2.16
WG1X290	65	76.1	3780	17190	2.7	103	151	49	M10X55	1.00
WG1X230	21/2	3.000	550	3890	0.106	4.055	5.945	1.929	3/8X2 ¹ /4	2.20
WG1X300	80	88.9	3780	23460	2.7	116	164	49	M10X55	1.11
WGINSOO	3	3.500	550	5290	0.106	4.567	6.457	1.929	³ / ₈ X2 ¹ / ₄	2.44
WG1X410	100	108.0	3450	31610	3.3	138	188	51	M12X70	1.48
WGIXIIO	4	4.250	500	7090	0.130	5.433	7.402	2.008	¹ / ₂ X2 ³ / ₄	3.26
WG1X400	100	114.3	3450	35400	3.3	144	194	51	M12X70	1.52
	4	4.500	500	7950	0.130	5.669	7.638	2.008	$^{1}/_{2}X_{2}^{3}/_{4}$	3.35
WG1X510	125	133.0	3450	47930	3.3	165	226	51	M12X75	2.07
1101/1310	5	5.250	500	10820	0.130	6.496	8.898	2.008	¹ / ₂ X3	4.56
WG1X511	125	139.7	3450	52880	3.3	172	232	51	M12X75	2.12
	5	5.500	500	11880	0.130	6.772	9.134	2.008	¹ / ₂ X3	4.67
WG1X500	125	141.3	3450	54100	3.3	173	234	51	M12X75	2.14
	5	5.563	500	12150	0.130	6.811	9.213	2.008	¹ / ₂ X3	4.71
WG1X601	150	159.0	3450	68500	3.3	192	252	52	M12X75	2.42
	6	6.250	500	15340	0.130	7.559	9.921	2.047	¹ / ₂ X3	5.33
WC1V6E0	150	165.1	3450	73860	3.3	198	258	52	M12X75	2.48
WG1X650	6	6.500	500	16590	0.130	7.795	10.157	2.047	¹ / ₂ X3	5.46
WC1Vc0c	150	168.3	3450	76750	3.3	201	261	52	M12X75	2.53
WG1X600	6	6.625	500	17240	0.130	7.913	10.276	2.047	¹ / ₂ X3	5.57
WG1X800	200	219.1	2750	103680	4.9	260	325	61	M16X85	4.49
WGINOUU	8	8.625	400	23370	0.193	10.236	12.795	2.402	⁵ / ₈ X3 ³ / ₈	9.89
WG1X910	250	273.0	2500	146340	4.9	314	397	61	M20X115	5.53
WGINFIU	10	10.750	350	31770	0.193	12.362	15.630	2.402	³ / ₄ X4 ¹ / ₂	12.18
WG1X912	300	323.9	2500	205990	4.9	368	451	62	M20X115	7.22
WGIVAIS	12	12.750	350	44690	0.193	14.488	17.756	2.441	³ / ₄ X4 ¹ / ₂	15.90

- Working Pressure is based on roll grooved standard wall carbon steel pipe.
- Allowable Axial Displacement and Angular Movement (deflection) figures are for roll grooved standard steel pipe. Values for cut grooved pipe will be double that of roll grooved. These values are maximums; for design and installation purposes these figures should be reduced by: 50% for ¾"/DN20 - 3½"/DN90; 25% for 4"/DN100 and larger to compensate for jobsite conditions.
- Maximum working pressure for the fire protection application, approved pressure by related authorities should be used. UL/ULC 300 Psi 2065 kPa/21bars FM 300Psi 2065kPa/21 Bars

EXTRA HD FLEXIBLE COUPLING

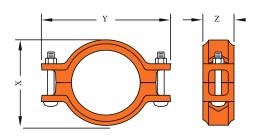


Figure-1NH

The Wingrou Figure 1NH is an extra heavy flexible coupling designed for high pressure services up to 1000 psi (70 Bar). This flexible coupling is painted RAL 3000 red paint and is supplied with a standard C-shaped gasket and heavy duty bolts and nuts. The Model 1NH can be installed on standard roll or cut grooved pipes or components. Sizes 2" through 4" require a bolt torque of 60 - 70 Lbs-Ft. with some bolt gaps. For sizes 6" and above, the bolt pads will make metal to metal contact when properly installed with no torque wrench required.

	Si	ze	Max. Work	Max. End	Allow. Pipe		Dimensions		Bolt/Nut	Approx.
D (N	Nominal Dia.	Actual O.D.	Pressure	Load	End Sep.	Х	Y	Z	Size	Wgt. Each
Part No.	DN	mm	KPa	N	mm	mm	mm	mm	mm	kg
	Inches	Inches	PSI	Lbs.	Inches	Inches	Inches	Inches	Inches	Lbs.
	25	33.4	10350	9068	2.2	57	101	44	M10X55	0.73
WG1NH100	1	1.315	1500	2037	0.087	2.244	3.976	1.732	3/8X21/4	1.61
	32	42.4	860	1214	2.2	66	113	45	M12X60	0.91
WG1NH125	11/4	1.660	1250	2705	0.087	2.598	4.449	1.772	1/2X23/8	2.00
WG1NH150	40	48.3	860	1576	2.2	72	121	45	M12X60	0.97
Wallillio	11/2	1.900	1250	3544	0.087	2.835	4.764	1.772	1/2X23/8	2.14
WG1NH200	50	60.3	860	2456	2.2	87	138	47	M12X60	1.20
WGTNH200	2	2.375	1250	5538	0.087	3.425	5.433	1.850	1/2X23/8	2.64
WG1NH250	65	73.0	6900	28879	2.4	101	152	49	M12X75	1.52
1701111250	21/2	2.875	1000	6492	0.094	3.976	5.984	1.929	1/2X3	3.35
WG1NH290	65	76.1	6900	31384	2.4	104	155	49	M12X75	1.54
	21/2	3.000	1000	7069	0.094	4.094	6.102	1.929	1/2X3	3.39
WG1NH300	80	88.9	6900	42830	2.8	118	170	49	M12X75	1.71
	3	3.500	1000	9621	0.110	4.646	6.693	1.929	1/2X3	3.77
WG1NH410	100	108.0	6900	63210	3.3	142	206	51	M16X85	2.60
WGTNH410	4	4.250	1000	14186	0.130	5.591	8.110	2.008	5/ ₈ X3 ³ / ₈	5.73
WG1NH400	100	114.3	6900	70800	3.3	148	212	51	M16X85	2.67
Wallingo	4	4.500	1000	15904	0.130	5.827	8.346	2.008	5/8X33/8	5.88
WG1NH510	125	133.0	6900	95861	3.6	169	243	51	M20X115	3.58
	5	5.250	1000	21648	0.142	6.654	9.567	2.008	$^{3}/_{4}X4^{1}/_{2}$	7.89
WG1NH511	125	139.7	6900	105763	3.6	176	249	51	M20X115	3.65
	5	5.500	1000	23758	0.142	6.929	9.803	2.008	3/ ₄ X4 ¹ / ₂	8.04
WG1NH500	125	141.3	6900	108199	3.6	177	251	51	M20X115	3.67
	5	5.563	1000	24306	0.142	6.969	9.882	2.008	³ / ₄ X4 ¹ / ₂	8.08
WG1NH601	150	159.0	6900	137004	3.9	197	271	51	M20X115	4.05
	6	6.250	1000	30680	0.154	7.756	10.669	2.008	3/ ₄ X4 ¹ / ₂	8.92
WG1NH650	150	165.1	6900	147718	3.9	203	277	51	M20X115	4.13
WGTIVITOSO	6	6.500	1000	33183	0.154	7.992	10.906	2.008	³ / ₄ X4 ¹ / ₂	9.10
WG1NH600	150	168.3	6900	153500	3.9	206	279	51	M20X115	4.15
Wallillood	6	6.625	1000	34472	0.154	8.110	10.984	2.008	3/ ₄ X4 ¹ / ₂	9.14
WG1NH800	200	219.1	5500	207366	4.9	267	357	63	M22X135	8.35
	8	8.625	800	46741	0.193	10.512	14.055	2.480	⁷ / ₈ X5 ¹ / ₂	18.39
WG1NH910	250	273.0	5500	321943	4.9	320	410	65	M24X135	10.70
	10	10.750	800	72610	0.193	12.598	16.142	2.559	1X5 ¹ / ₂	23.57
WG1NH912	300	323.9	5500	453185	4.9	370	460	65	M24X135	12.30
	12	12.750	800	102141	0.193	14.567	18.110	2.559	1X5 ¹ / ₂	27.09

- * Working Pressure is based on roll grooved standard wall carbon steel pipe.
- * Allowable Axial Displacement and Angular Movement (deflection) figures are for roll grooved standard steel pipe. Values for cut grooved pipe will be double that of roll grooved. These values are maximums; for design and installation purposes these figures should be reduced by: 50% for 3/4"/DN20 31/2"/DN90; 25% for 4"/DN100 and larger to compensate for jobsite conditions.
- * Maximum working pressure for the fire protection application, approved pressure by related authorities should be used. UL/ULC 300 Psi 2065 kPa/21bars FM 300Psi 2065kPa/21 Bars

FLEXIBLE REDUCING COUPLING

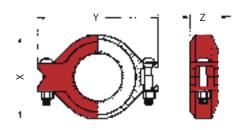


Figure-1NR

- The specially designed rubber gasket helps prevent small pipe from telescoping into larger pipe during vertical assembly.
- Direct reduction on the piping run
- Designed to replace two coupling and a reducing fittings
- Special reducing gasket for pressure responive sealing
- Pressure rated up to 300psi/2065kPa /21 bars

Fitting Coating:

Red enamel in Europe, Middle East, Africa, and India. Orange enamel in USA Optional: Hot dipped galvanized.

	Size	Max. Work	Max. End	Allow. Pipe		Dimensions		Bolt/Nut	Approx.
	Run Pipe X Bran Pipe	Pressure	Load	End Sep.	Х	Υ	Z	Size	Wgt. Each
	mm X mm	KPa	N	mm	mm	mm	mm	mm	kg
	Inches χInches	PSI	Lbs.	Inches	Inches	Inches	Inches	Inches	Lbs.
WG1NR150X125	48.3 X 42.4	3800	5365	2.4	64	129	47	M10X50	0.66
	1 ¹ / ₂ 1 ¹ / ₄	550	1190	0.094	2.520	5.079	1.850	³ /8X2	1.45
WG1NR200X125	60.3 X 42.4	3800	5365	2.6	80	145	47	M10X50	0.86
	2 1 ¹ / ₄	550	1190	0.102	3.150	5.709	1.850	³ /8X2	1.89
WG1NR200X150	60.3 X 48.3	3800	6963	2.6	80	145	47	M10X50	0.87
	2 1 ¹ / ₂	550	1559	0.102	3.150	5.709	1.850	3/8X2	1.92
WG1NR250X200	73.0 X 60.3	3800	10852	2.9	95	160	49	M12X75	1.31
	2 ¹ / ₂ 2	550	2437	0.114	3.740	6.299	1.929	1/ ₂ X3	2.89
WG1NR290X200	76.1 X 60.3	3800	10852	2.9	98	164	49	M12X75	1.35
	2 ¹ /2 2	550	2437	0.114	3.858	6.457	1.929	1/2X3	2.97
WG1NR300X200	88.9 X 60.3	3450	9852	3.1	115	178	49	M12X75	1.59
	3 2	500	2215	0.122	4.528	7.008	1.929	1/ ₂ X3	3.50
WG1NR300X250	88.9 X 73.0	3800	15905	3.1	115	178	49	M12X75	1.54
	3 2 ¹ /2	550	3571	0.122	4.528	7.008	1.929	1/ ₂ X3	3.39
WG1NR300X290	88.9 X 76.1	3800	17284	3.1	115	178	49	M12X75	1.48
	3 2 ¹ /2	550	3888	0.122	4.528	7.008	1.929	1/ ₂ X3	3.26
WG1NR400X200	114.3 X 60.3	3450	9852	3.5	141	208	51	M16X85	2.72
	4 2	500	2215	0.138	5.551	8.189	2.008	5/8X3 ³ /8	5.99
WG1NR400X250	114.3 X 73.0	3450	14440	3.5	141	208	51	M16X85	2.55
	4 2 ¹ / ₂	500	3246	0.138	5.551	8.189	2.008	5/8X3 ³ /8	5.62
WG1NR400X290	114.3 X 76.1	3450	15692	3.5	141	208	51	M16X85	2.51
	4 2 ¹ /2	500	3534	0.138	5.551	8.189	2.008	5/8X33/8	5.53
WG1NR400X300	114.3 X 88.9	3800	23587	3.5	141	208	51	M16X85	2.33
	4 3	550	5292	0.138	5.551	8.189	2.008	⁵ /8X3 ³ /8	5.13
WG1NR511X300	139.7 X 88.9	2750	17070	4.0	168	247	51	M20X115	3.68
	5 3	400	3848	0.157	6.614	9.724	2.008	3/4X4 ¹ / ₂	8.11
WG1NR511X400	139.7 X 114.3	3100	31809	4.0	168	247	51	M20X115	3.19
	5 4	450	7157	0.157	6.614	9.724	2.008	3/4X4 ¹ /2	7.03
WG1NR500X300	141.3 X 88.9	2750	17070	4.0	169	249	51	M20X115	3.74
	5 3	400	3848	0.157	6.654	9.803	2.008	3/4X4 ¹ /2	8.24
WG1NR500X400	141.3 X 114.3	3100	31809	4.0	169	249	51	M20X115	3.45
	5 X 4	450	7157	0.157	6.654	9.803	2.008	3/4X4 ¹ /2	7.60
WG1NR650X400	165.1 X 114.3	2750	28217	4.7	197	276	51	M20X115	4.25
	6 4	400	6362	0.185	7.756	10.866	2.008	3/4X4 ¹ /2	9.36
WG1NR650X500	165.1 X 139.7	3100	47517	4.7	197	276	51	M20X115	3.68
	6 5	450	10691	0.185	7.756	10.866	2.008	³ /4X4 ¹ /2	8.11
WG1NR600X400	168.3 X 114.3	2750	28217	4.7	199	276	51	M20X115	4.24
	6 4	400	6362	0.185	7.835	10.866	2.008	³ /4X4 ¹ /2	9.34
WG1NR600X500	168.3 X 141.3	3100	48611	4.7	199	276	51	M20X115	3.82
	6 5	450	10938	0.185	7.835	10.866	2.008	3/4X4 ¹ / ₂	8.41
WG1NR800X650	219.1 X 165.1	2750	58873	4.9	261	356	61	M22X135	8.45
	8 6	400	13273	0.193	10.276	14.016	2.402	7/8X51/2	18.61
WG1NR800X600	219.1 X 168.3	2750	61178	4.9	261	356	61	M22X135	8.38
	8 6	400	13789	0.193	10.276	14.016	2.402	7/8X51/2	18.46

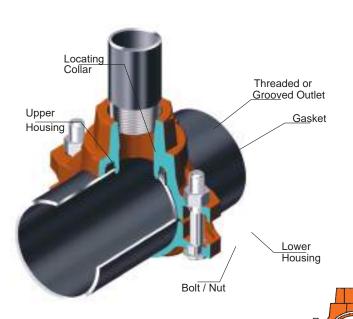
- * Working Pressure is based on roll grooved standard wall carbon steel pipe.
- * Allowable Axial Displacement and Angular Movement (deflection) figures are for roll grooved standard steel pipe. Values for cut grooved pipe will be double that of roll grooved. These values are maximums; for design and installation purposes these figures should be reduced by: 50% for 3/4"/DN20 31/2"/DN90; 25% for 4"/DN100 and larger to compensate for jobsite conditions.
- Maximum working pressure for the fire protection application, approved pressure by related authorities should be used. UL/ULC 300 Psi 2065 kPa/21bars FM 300Psi 2065kPa/21 Bars

CAUTION Model 1N / INR coupling should not be used with an end cap, as the end maybe sucked into the pipe when draining the system.

HOLE-CUT PIPING SYSTEM

INSTALLATION INSTRUCTIONS:

- **01.** Cut or drill in pipe Hole diameter for each mechanical branch out-let listed on the chart pertaining to the product Hole must be drilled on the center-line of the pipe. Remove the cut piece and cutting chips. make sure that the pipe surface within 7/8 " of the hole is clean, smooth and free of indentations or projections which would afect proper sealing
- **02.** Remove one nut and bolt from housing loosen the other nut until it flush with the end of the bolt. Remove the tape and lift gasket.
- **03.** Check suitability of gasket for intended service . Reposition the gaskinto the housing using alignment tabs on the sides for proper positioning.
- **04.** Rotate the lower housing approximately 90 Degree away from upper or outlet section. Place the upper onto the surface of the pipe in line with the outlet hole prepared per instructions and rotate the lower section around the pipe and close the two halve.
- **05.** insert bolt in its hole and finger tighten both nuts, making sure that locating collar is in the outlet hole. Also make sure that the positioning lugs aligned properly.
- **06.**Tighten nuts uniformly until the gasket pocket area of the upper housing is in the complete contact with pipe surface and the assembly is rigid.Nuts must be tightened with even gaps between bolt pads. Torgue in excess of what is recommended is not desirable.



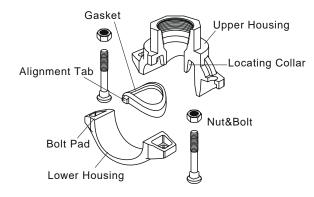
WARNING: Depressurize and drain the piping system before attempting to install, remove, or adjust any piping products. Wear safety glasses, hardhat, and foot protection.

Grooved-end and threaded outlets are available

The Model 3L Saddle-Let mechanical tee is the ideal outlet fitting for direct connection to sprinkler heads, short risers, drops, and or gauges.

A mechanical cross connection can be made by combining two upper housing segments -(Style 3GS/3JS)

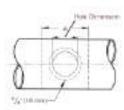
HOLE-CUT PIPING SYSTEM



Mechanical Tees

Wingrou mechanic a I tees provide a fast and easy mid-point branch outlet, eliminating the need for welding or the use of multiple fittings.

The Model 3J features a female threaded outlet and 3G features a grooved end outlet. Model 3J (female threaded outlet) and 3G (grooved end outlet) are available in 8" sizes. The Model 3L Saddle-let features a compact-design for making direct connections to sprinkler heads, drop nipples and or gauges.


When bolts are tightened with a proper torque, the outlet housing makes metal to metal contact with the outer surface of the pipe.

It is normal to see bolt pad gaps, though they should be equal on both sides of the mechanical tee.

Hole-cutting

The hole-cut method of pipe preparation is required when using mechanical tees, mechanical crosses, and saddle-lets. The method of pipe preparation requires the cutting or drilling of a specified hole size on the centerline of the pipe.

Always use the correct hole saw size as shown in each data chart and never use a torch for cutting a hole. After the hole has been cut all rough edges must be removed and the area within 5%" (16 mm) of the hole should be inspected to ensure a clean smooth surface, free of any indentations or projections that could affect proper gasket sealing. The area within the "A" dimension should also be inspected and must be free of dirt, scale or any imperfection that could affect proper seating or assembly of the fitting.

Hole Size: The hole sizes are dictated by the branch size of the mechanical tee. Refer to product data chart.

Model No. Wingrou TWK111A Hole Cutting Tool

The hole must be cleanly cut using the correct size hole-saw and shall have a smooth edge. Never use a torch for cutting a hole.

MECHANICAL TEES

Figure-3G/3J

Model 3G Grooved Outlet Model 3JThreaded **Mechanical Tee**

Mechanical Tee

Model 3G Grooved Outlet **Mechanical Tee**

Model 3JThreaded **Mechanical Tee**

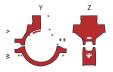
The Model 3G & 3J Mechanical Tee provides a fast and easy mid-pipe threaded or groove branch outlet. It eliminates the need for welding or mulple fittings. The mechanical tee utilizes ductile iron housings, a grade E moulded gasket and heat-treated carbon steel track bolts and nuts. Pressure rated to 300 psi (20 bar). Maximum working pressure for the fire protection application, approved pressure by related authorities should be used. UL/ ULC 300 Psi 2065 kPa/21bars FM 300Psi 2065kPa/21 Bars

		Size	:		Hole Size			Dime	ensions				Approx	k. Wgt.
Part No.	Run Pipe	ХЕ	Branch Pipe	Max. Work Pressure	Tiole Size	W	Υ	Z	3G V	3J V	3J T	Bolt/Nut Size	3G	3J
i dit ivo.	mm Inches	X X	mm Inches	KPa PSI	mm Inches	kg Lbs.	kg Lbs.							
WG3G/3J200100	60.3 2	Х	33.4 1	3450 500	38 1.50	37 1.46	134 5.28	70 2.76	64 2.52	62 2.44	46 1.81	M12X65 1/2X21/2	0.85 1.87	0.81 1.78
WG3G/3J200125			42.4 1 ¹ / ₄	3450 500	44.5 1.75	37 1.46	134 5.28	77 3.03	65 2.56	65 2.56	46 1.81	M12X65	0.89 1.96	0.92 203
WG3G/3J200150			48.3 1 ¹ / ₂	3450 500	44.5 1.75	37 1.46	134 5.28	77 3.03	65 2.56	65 2.56	46 1.81	M12X65	0.91 2.00	0.98 2.16
WG3G/3J250100	73.0 2 ¹ / ₂	Χ	33.4	3450 500	38 1.50	43 1.69	148 5.83	68 2.68	74 2.91	64 2.52	46 1.81	M12X75	1.25 2.75	1.16 2.56
WG3G/3J250125	,,,		42.4 1 ¹ / ₄	3450 500	44.5 1.75	43 1.69	148 5.83	76 2.99	74 2.91	67 2.64	46 1.81	M12X75	1.28 2.82	1.33 2.93
WG3G/3J250150			48.3 1 ¹ / ₂	3450 500	51 2.00	43 1.69	148 5.83	83 3.27	74 2.91	67 2.64	46 1.81	M12X75	1.39 3.06	1.52 3.35
WG3G/3J290100	76.1 21/2	Χ	33.4	3450 500	38 1.50	45 1.77	151 5.94	68 2.68	76 2.99	66 2.60	47 1.85	M12X75	1.19 2.62	1.17 2.58
WG3G/3J290125	21/2		42.4 1 ¹ / ₄	3450 500	44.5 1.75	45 1.77	151 5.94	76 2.99	76 2.99	68 2.68	47 1.85	M12X75	1.22	1.27 2.80
WG3G/3J290150			48.3 1 ¹ / ₂	3450 500	51 2.00	45 1.77	151 5.94	83 3.27	76 2.99	69 2.72	47 1.85	M12X75	1.27	1.33 2.93
WG3G/3J300100	88.9	Х	33.4	3450 500	38 1.50	52 2.05	161 6.34	68 2.68	82 3.23	72 2.83	54 2.13	M12X75	1.28 2.82	1.25 2.75
WG3G/3J300125			42.4 1 ¹ / ₄	3450 500	44.5 1.75	52 2.05	161 6.34	75 2.95	82 3.23	74 2.91	54 2.13	M12X75	1.31	1.36
WG3G/3J300150			48.3 1 ¹ / ₂	3450 500	51 2.00	52 2.05	161 6.34	82 3.23	82 3.23	75 2.95	54 2.13	M12X75	1.37 3.02	1.43 3.15
WG3G/3J300200			60.3	3450 500	64 2.50	52 2.05	161 6.34	95 3.74	82 3.23	79 3.11	54 2.13	M12X75	1.44 3.17	1.56
WG3G/3J410100	108.0	Χ	33.4	3450 500	38 1.50	62 2.44	182 7.17	69 2.72	93 3.66	84 3.31	65 2.56	M12X75	1.48 3.26	1.44
WG3G/3J410125			42.4 1 ¹ / ₄	3450 500	44.5 1.75	62 2.44	182 7.17	75 2.95	93 3.66	86 3.39	65 2.56	M12X75	1.52 3.35	1.56 3.44
WG3G/3J410150			48.3 1 ¹ / ₂	3450 500	51 2.00	62 2.44	182 7.17	83 3.27	93 3.66	86 3.39	65 2.56	M12X75	1.59 3.50	1.64 3.61
WG3G/3J410200			60.3	3450 500	64 2.50	62 2.44	182 7.17	95 3.74	93 3.66	90 3.54	65 2.56	M12X75	1.7 3.74	1.81
WG3G/3J410250			76.1 2 ¹ / ₂	3450 500	70 2.75	62	182 7.17	101 3.98	94 3.70	94	65 2.56	M12X75	1.91 4.21	2.13 4.69
WG3G/3J400100	114.3 4	Χ	33.4	3450 500	38 1.50	65 2.56	188 7.40	69 2.72	96 3.78	87 3.43	68 2.68	M12X75	1.52 3.35	1.45 3.19
WG3G/3J400125			42.4 1 ¹ / ₄	3450 500	44.5 1.75	65 2.56	188 7.40	75 2.95	96 3.78	89 3.50	68 2.68	M12X75	1.55 3.41	1.58 3.48
WG3G/3J400150			48.3 1 ¹ / ₂	3450 500	51 2.00	65 2.56	188 7.40	83 3.27	96 3.78	89 3.50	68 2.68	M12X75	1.62 3.57	1.67 3.68
WG3G/3J400200			60.3	3450 500	64 2.50	65 2.56	188 7.40	95 3.74	96 3.78	93 3.66	68 2.68	M12X75	1.75 3.85	1.86 4.10
WG3G/3J400250			73.0 2 ¹ / ₂	3450 500	70 2.75	65 2.56	188 7.40	101 3.98	97 3.82	97 3.82	68 2.68	M12X75	1.91 4.21	2.02 4.45
WG3G/3J400290			76.1 2 ¹ / ₂	3450 500	70 2.75	65 2.56	188 7.40	101 3.98	97 3.82	97 3.82	68 2.68	M12X75	1.93 4.25	2.05
WG3G/3J400300			88.9	3450 500	89 3.50	65 2.56	188 7.40	122 4.80	97 3.82	100 3.94	68 2.68	M12X75	2.07	2.31 5.09

Important: Make special note of the hole saw size and maximum diameter allowed on these sizes deviation could lead to joint failure.

MECHANICAL TEES

Figure-3G/3J



Model 3G Grooved Outlet Mechanical Tee

Model 3JThreaded Mechanical Tee

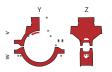
The Model 3G & 3J Mechanical Tees provide a fast and easy mid-pipe threaded or Groove branch outlet. The 3G & 3J eliminate the need for welding or multiple fittings. The mechanical tee utilizes ductile iron housings, a grade E moulded gasket and heat-treated carbon steel track bolts and nuts. UL/FM working pressure of Model 3G & 3J rated to 300 psi (20 Bar).

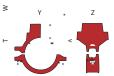
	Size	Max. Work	Hole				Dimension	S		Bolt/Nut	Appro	x. Wgt.
Part No.	Run Pipe X Branch Pipe	Pressure	Size	w	Υ	Z	3G V	3J V	3J T	Size	3G	3J
	mm X mm	KPa	mm	mm	mm	mm	mm	mm	mm	mm	kg	kg
	Inches X Inches	PSI	Inches	Inches	Inches	Inches	Inches	Inches	Inches	Inches	Lbs.	Lbs.
WG3G/3J200100	133.0 X 33.4	3450	38	75	239	68	107	97	79	M16X85	2.1	2.03
	5 1	500	1.50	2.95	9.41	2.68	4.21	3.82	3.11	5/8X3 ³ /8	4.63	4.47
WG3G/3J200125	42.4	3450	44.5	75	239	75	107	100	79	M16X85	2.13	2.17
	1 ¹ / ₄	500	1.75	2.95	9.41	2.95	4.21	3.94	3.11	5/8X3 ³ /8	4.69	4.78
WG3G/3J200150	48.3	3450	51	75	239	81	107	100	79	M16X85	2.21	2.26
	1 ¹ / ₂	500	2.00	2.95	9.41	3.19	4.21	3.94	3.11	5/ ₈ X3 ³ / ₈	4.87	4.98
WG3G/3J250100	60.3	3450 500	64 2.50	75 2.95	239 9.41	95 3.74	107 4.21	104 4.09	79 3.11	M16X85 5/8X3 ³ /8	2.36 5.20	2.47 5.44
WG3G/3J250125	76.1	3450	70	75	239	103	107	107	79	M16X85	2.58	2.79
	2 ¹ / ₂	500	2.75	2.95	9.41	4.06	4.21	4.21	3.11	5/8X3 ³ /8	5.68	6.15
WG3G/3J250150	88.9	3450	89	75	239	120	107	111	79	M16X85	2.71	3.04
	3	500	3.50	2.95	9.41	4.72	4.21	4.37	3.11	5/ ₈ X3 ³ / ₈	5.97	6.70
WG3G/3J290100	139.7 X 33.4	3450	38	78	232	68	110	100	82	M16X85	2.15	2.08
	5 1	500	1.50	3.07	9.13	2.68	4.33	3.94	3.23	5/ ₈ X3 ³ / ₈	4.74	4.58
WG3G/3J290125	42.4	3450	44.5	78	232	75	110	103	82	M16X85	2.19	2.23
	1 ¹ / ₄	500	1.75	3.07	9.13	2.95	4.33	4.06	3.23	5/8X33/8	4.82	4.91
WG3G/3J290150	48.3	3450	51	78	232	81	110	103	82	M16X85	2.26	2.31
	1 ¹ / ₂	500	2.00	3.07	9.13	3.19	4.33	4.06	3.23	5/ ₈ X3 ³ / ₈	4.98	5.09
WG3G/3J300100	60.3	3450 500	64 2.50	78 3.07	232 9.13	95 3.74	110 4.33	107 4.21	82 3.23	M16X85 5/8X3 ³ /8	2.42 5.33	2.53 5.57
WG3G/3J300125	76.1	3450	70	78	232	103	110	110	82	M16X85	2.65	2.86
	2 ¹ / ₂	500	2.75	3.07	9.13	4.06	4.33	4.33	3.23	5/ ₈ X3 ³ / ₈	5.84	6.30
WG3G/3J300150	88.9	3450	89	78	232	120	110	114	82	M16X85	2.77	3.1
	3	500	3.50	3.07	9.13	4.72	4.33	4.49	3.23	5/8X3 ³ /8	6.10	6.83
WG3G/3J300200	141.3 X 33.4	3450	38	79	234	68	111	99	82	M16X85	2.14	2.07
	5 1	500	1.50	3.11	9.21	2.68	4.37	3.90	3.23	5/ ₈ X3 ³ / ₈	4.71	4.56
WG3G/3J410100	42.4	3450	44.5	79	234	75	111	102	82	M16X85	2.18	2.22
	1 ¹ / ₄	500	1.75	3.11	9.21	2.95	4.37	4.02	3.23	5/ ₈ X3 ³ / ₈	4.80	4.89
WG3G/3J410125	48.3	3450	51	79	234	81	111	102	82	M16X85	2.26	2.31
	1 ¹ / ₂	500	2.00	3.11	9.21	3.19	4.37	4.02	3.23	5/ ₈ X3 ³ / ₈	4.98	5.09
WG3G/3J410150	60.3	3450 500	64 2.50	79 3.11	234 9.21	39754	111 4.37	106 4.17	82 3.23	M16X85 5/8X3 ³ /8	2.42 5.33	2.52 5.55
WG3G/3J410200	73.0	3450	70	79	234	103	112	109	83	M16X85	2.63	2.83
	2 ¹ / ₂	500	2.75	3.11	9.21	4.06	4.41	4.29	3.27	5/ ₈ X3 ³ / ₈	5.79	6.23
WG3G/3J410250	88.9	3450	89	79	234	120	112	113	83	M16X85	2.77	3.1
	3	500	3.50	3.11	9.21	4.72	4.41	4.45	3.27	5/ ₈ X3 ³ / ₈	6.10	6.83
WG3G/3J400100	159.0 X 33.4	3450	38	89	251	68	121	111	92	M16X85	2.4	2.3
	6 1	500	1.50	3.50	9.88	2.68	4.76	4.37	3.62	5/ ₈ X3 ³ / ₈	5.29	5.07
WG3G/3J400X125	42.4	3450	44.5	89	251	74	121	113	92	M16X85	2.44	2.47
	1 ¹ / ₄	500	1.75	3.50	9.88	2.91	4.76	4.45	3.62	5/8X3 ³ /8	5.37	5.44
WG3G/3J400X150	48.3	3450	51	89	251	80	121	114	92	M16X85	2.51	2.56
	1 ¹ / ₂	500	2.00	3.50	9.88	3.15	4.76	4.49	3.62	5/ ₈ X3 ³ / ₈	5.53	5.64
WG3G/3J400X200	60.3	3450 500	64 2.50	89 3.50	251 9.88	94 3.70	121 4.76	117 4.61	92 3.62	M16X85 5/ ₈ X3 ³ / ₈	2.72 5.99	2.82 6.21
WG3G/3J400X250	76.1	3450	70	89	251	103	121	121	92	M16X85	3.09	3.29
	2 ¹ / ₂	500	2.75	3.50	9.88	4.06	4.76	4.76	3.62	5/8X3 ³ /8	6.81	7.25
WG3G/3J400X290	88.9	3450 500	89 3.50	89 3.50	251 9.88	120 4.72	121 4.76	124 4.88	92 3.62	M16X85 5/ ₈ X3 ³ / ₈	3.09 6.81	3.42 7.53
WG3G/3J400X300	108.0	3450 500	114 4.50	89 3.50	251 9.88	146 5.75	123 4.84		92	M16X85 5/ ₈ X3 ³ / ₈	3.44 7.58	
	114.3	3450 500	114 4.50	89 3.50	251 9.88	146 5.75	123 4.84		92 3.62	M16X85 5/ ₈ X3 ³ / ₈	3.49 7.69	

Important: Make special note of the hole saw size and maximum diameter allowed on these sizes, deviation could lead to joint failure

MECHANICAL TEES

Figure-3G/3J




Model 3G Grooved Outlet Mechanical Tee

Model 3JThreaded Mechanical Tee

Model 3G Grooved Outlet Mechanical Tee

Model 3JThreaded Mechanical Tee

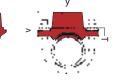
The Figure 3G & 3J Mechanical Tee provides a fast and easy mid-pipe threaded branch outlet. The mechanical tee utilizes ductile iron housings, a grade E gasket and heat-treated carbon steel track bolts and nuts.

Fitting Coating:

Red enamel in Europe, Middle East, Africa, and India. Orange enamel in USA Optional: Hot dipped galvanized

Size	e	Max. Work	Hole				Dimension	ıs		Bolt/Nut	Approx	c. Wgt.
Run Pipe X	Branch Pipe	Pressure	Size	W	Y	Z	3G V	3J V	3J T	Size	3G	3J
mm X		КРа	mm	mm	mm	mm	mm	mm	mm	mm	kg	kg
Inches X		PSI	Inches	Inches	Inches	Inches	Inches	Inches	Inches	Inches	Lbs.	Lbs.
165.1 X	33.4 1	3450 500	38 1.50	95 3.74	124 4.88	114 4.49	92 3.62	257 10.12	68 2.68	M16X85 5/8X33/8	2.42 5.33	2.31 5.09
-	42.4	3450	44.5	95	124	116	92	257	74	M16X85	2.46	2.5
	11/4	500	1.75	3.74	4.88	4.57	3.62	10.12	2.91	5/8X33/8	5.42	5.51
	48.3	3450	51	95	124	117	92	257	80	M16X85	2.53	2.58
	11/2	500	2.00	3.74	4.88	4.61	3.62	10.12	3.15	5/ ₈ X3 ³ / ₈	5.57	5.68
	60.3 2	3450 500	64 2.50	95 3.74	124 4.88	120 4.72	92 3.62	257 10.12	94 3.70	M16X85 5/8X33/8	2.73 6.01	2.83 6.23
	76.1	3450	70	95	124	124	92	257	103	/ ₈ A3 / ₈ M16X85	2.99	3.1
	$2^{1}/_{2}$	500	2.75	3.74	4.88	4.88	3.62	10.12	4.06	5/8X3 ³ /8	6.59	6.83
	88.9	3450	89	95	124	127	92	257	120	M16X85	3.12	3.44
	3	500	3.50	3.74	4.88	5.00	3.62	10.12	4.72	5/ ₈ X3 ³ / ₈	6.87	7.58
	108.0	3450	114	95	126		92	257	146	M16X85	3.38	
	4 114.3	500 3450	4.50 114	3.74 95	4.96 126		3.62 92	10.12 257	5.75 146	⁵ / ₈ X3 ³ / ₈ M16X85	7.44 3.44	
	4	500	4.50	3.74	4.96		3.62	10.12	5.75	5/ ₈ X3 ³ / ₈	7.58	
168.3 X	33.4	3450	38	97	126	116	94	260	68	M16X85	2.43	2.34
6	1	500	1.50	3.82	4.96	4.57	3.70	10.24	2.68	⁵ / ₈ X3 ³ / ₈	5.35	5.15
	42.4	3450	44.5	97	126	118	94	260	74	M16X85	2.47	2.51
	11/4	500	1.75	3.82	4.96	4.65	3.70	10.24	2.91	5/8X33/8	5.44	5.53
	48.3 1 ¹ / ₂	3450 500	51 2.00	97 3.82	126 4.96	119 4.69	94 3.70	260 10.24	80 3.15	M16X85 5/ ₈ X3 ³ / ₈	2.53 5.57	2.58 5.68
	60.3	3450	64	97	126	122	94	260	94	M16X85	2.74	2.85
	2	500	2.50	3.82	4.96	4.80	3.70	10.24	3.70	5/8X33/8	6.04	6.28
	73.0	3450	70	97	126	124	94	260	103	M16X85	2.96	3.15
	21/2	500	2.75	3.82	4.96	4.88	3.70	10.24	4.06	⁵ / ₈ X3 ³ / ₈	6.52	6.94
	88.9 3	3450 500	89 3.50	97 3.82	126 4.96	129 5.08	94 3.70	260 10.24	120 4.72	M16X85 5/8X33/8	3.13 6.89	3.44 7.58
	114.3	3450	114	97	128		94	260	146	M16X85	3.52	
	4	500	4.50	3.82	5.04		3.70	10.24	5.75	5/8X3 ³ /8	7.75	
219.1 X	33.4	3450	38	123	152	142	121	328	68	M20X115	3.95	3.82
8	1	500	1.50	4.84	5.98	5.59	4.76	12.91	2.68	3/ ₄ X4 ¹ / ₂	8.70	8.41
	42.4 1 ¹ / ₄	3450 500	44.5 1.75	123 4.84	152 5.98	144 5.67	121 4.76	328 12.91	74 2.91	M20X115 3/ ₄ X4 ¹ / ₂	3.98 8.77	4.02 8.85
	48.3	3450	51	123	152	145	121	328	81	M20X115	4.11	4.16
	11/2	500	2.00	4.84	5.98	5.71	4.76	12.91	3.19	3/ ₄ X4 ¹ / ₂	9.05	9.16
	60.3	3450	64	123	152	148	121	328	94	M20X115	4.37	4.47
	2	500	2.50	4.84	5.98	5.83	4.76	12.91	3.70	3/ ₄ X4 ¹ / ₂	9.63	9.85
	73.0 2 ¹ / ₂	3450 500	70 2.75	123 4.84	152 5.98	152 5.98	121 4.76	328 12.91	103 4.06	M20X115 3/ ₄ X4 ¹ / ₂	4.56 10.04	4.74 10.44
	76.1	3450	70	123	152	152	121	328	103	M20X115	4.58	4.78
	2 ¹ / ₂	500	2.75	4.84	5.98	5.98	4.76	12.91	4.06	3/ ₄ X4 ¹ / ₂	10.09	10.53
	88.9	3450	89	123	152	155	121	328	120	M20X115	4.83	5.13
	3	500	3.50	4.84	5.98	6.10	4.76	12.91	4.72	3/ ₄ X4 ¹ / ₂	10.64	11.30
	108.0 4	3450 500	114 4.50	123 4.84	154 6.06		121 4.76	328 12.91	145 5.71	M20X115 3/ ₄ X4 ¹ / ₂	5.26 11.59	
	114.3	3450	4.50	123	154		121	328	145	M20X115	5.31	
	4	500	4.50	4.84	6.06		4.76	12.91	5.71	³ / ₄ X4 ¹ / ₂	11.70	

SADDLE-LET


Figure-3L

The Model 3L Saddle-Lets is the ideal outlet fitting for making direct connections to sprinkler heads, drop nipples and or gauges. No need for welding, just cut or drill a hole at the desired outlet location. Posion the Saddle-Let so that the locating collar fits within the hole and secure with the U-bolt and nuts. The Saddle-Let allows full bore low and is pressure rates to 300 psi (20 bar).

Hole Cutting

The method of pipe preparation requires the cutting or drilling of a specified hole size on the centerline of the pipe. Always use the correct hole saw size as shown in the table and never use a torch for cutting a hole. After the hole has been cut all rough edges must be removed and the area within %" (16 mm) of the hole should be inspected to ensure a clean smooth surface, free of any indentations or projections that could affect proper gasket sealing.

Fitting Coating:

Red enamel in Europe, Middle East, Africa, and India. Orange enamel in USA Optional: Hot dipped galvanized

	Size		Max. Wor			Dime	nsions			Approx.
Run	Х	Branch	k _{Pressure}	Hole Size	Υ	Z	V	Т	Bolt/Nut Size	Wgt.
Pipe mm	Х	Pipe mm	KPa	mm	mm	mm	mm	mm	mm	kg
Inches	Х	Inches	PSI	Inches	Inches	Inches	Inches	Inches	Inches	Lbs.
42.4	Х	21.3	2500	30.5	88	57	46	28	M10 X 68 X 38	0.32
11/4		1/2	350	1.20	3.46	2.25	1.81	1.10	³ / ₈ X 2 ¹¹ / ₁₆ X 1 ¹ / ₂	0.70
		26.9	2500	30.5	88	57	46	30	M10 X 68 X 38	0.34
		3/4	350	1.20	3.46	2.25	1.81	1.81	³ / ₈ X 2 ¹¹ / ₁₆ X 1 ¹ / ₂	0.75
		33.4	2500	30.5	88	57	52	34	M10 X 68 X 38	0.40
		1	350	1.20	3.46	2.25	2.05	1.34	3/8 X 2 ¹¹ / ₁₆ X 1 ¹ / ₂	0.88
48.3	Х	21.3	2500	30.5	88	57	45	31	M10 X 68 X 38	0.32
11/2		1/2	350	1.20	3.46	2.25	1.77	1.22	³ / ₈ X 2 ¹¹ / ₁₆ X 1 ¹ / ₂	0.70
		26.9	2500	30.5	88	57	48	33	M10 X 68 X 38	0.34
		3/4	350	1.20	3.46	2.25	1.89	1.30	³ / ₈ X 2 ¹¹ / ₁₆ X 1 ¹ / ₂	0.75
		33.4	2500	30.5	88	57	55	37	M10 X 68 X 38	0.40
		1	350	1.20	3.46	2.25	2.17	1.46	³ / ₈ X 2 ¹¹ / ₁₆ X 1 ¹ / ₂	0.88
60.3	Х	21.3	2500	30.5	94	57	51	37	M10 X 74 X 47	0.33
2		1 /2	350	1.20	3.70	2.25	2.00	1.46	³ / ₈ X 2 ¹⁵ / ₁₆ X 1 ⁷ / ₈	0.73
		26.9	2500	30.5	94	57	54	39	M10 X 74 X 47	0.35
		3/4	350	1.20	3.70	2.25	2.13	1.54	³ / ₈ X 2 ¹⁵ / ₁₆ X 1 ⁷ / ₈	0.77
		33.4	2500	30.5	94	57	61	43	M10 X 74 X 47	0.41
		1	350	1.20	3.70	2.25	2.40	1.69	$^{3}/_{8}$ X $2^{15}/_{16}$ X $1^{7}/_{8}$	0.90
73	Х	21.3	2500	30.5	108	57	57	43	M10 X 89X 57	0.49
21/2		1/2	350	1.20	4.25	2.25	2.25	1.69	3/8 X 3 ¹ / ₂ X 2 ¹ / ₄	1.08
		26.9	2500	30.5	108	57	60	45	M10 X 89X 57	0.51
		3/4	350	1.20	4.25	2.25	2.36	1.77	3/8 X 3 ¹ / ₂ X 2 ¹ / ₄	1.12
		33.4	2500	30.5	108	57	67	49	M10 X 89X 57	0.57
		1	350	1.20	4.25	2.25	2.64	1.93	3/8 X 3 ¹ / ₂ X 2 ¹ / ₄	1.26
76.1	Х	21.3	2500	30.5	108	57	59	45	M10 X 89X 57	0.49
21/2		1/2	350	1.20	4.25	2.25	2.32	1.77	3/8 X 3 ¹ / ₂ X 2 ¹ / ₄	1.08
		26.9	2500	30.5	108	57	62	47	M10 X 89X 57	0.51
		3/4	350	1.20	4.25	2.25	2.44	1.85	3/8 X 3 ¹ / ₂ X 2 ¹ / ₄	1.12
		33.4	2500	30.5	108	57	69	51	M10 X 89X 57	0.57
		1	350	1.20	4.25	2.25	2.72	2.00	3/ ₈ X 3 ¹ / ₂ X 2 ¹ / ₄	1.26

GROOVED FLANGE

Installation Instructions:

- 1. Open the flange Adapter and place hinged flange around the grooved pipe end with the circular key section locating into the groove
- 2. Insert a standard bolt through the mating holes of the flange to secure the flange in the groove
- 3. Check suitability of gasket for intended service and apply a thin coat of silicone or other compatible pipe lubricant to gasket lips and outside of the gasket, if the gasket surface does not have lubricity
- 4. Press the gasket into cavity between the pipe OD, and flange recess.
- Insert a standard flange bolt in the hing hole opposite the lock bolt and direct the two bolt assembly to mate with the flangeof the device to be joined

Add ghe remaining standard flange bolt and tighten all nuts evenly until faces contact firmly or bolt attain recommended joint torque values

WARNING: Depressurize and drain the piping system before attempting to install, remove, or adjust any piping products. Wear safety glasses, hardhat, and foot protection.

- Wingrou Style 321 Grooved Flange is designed to provide a rigid transition from a flanged component to a grooved piping system. Grooved
- Flanges are supplied as per ANSI Class 125 drilling pattern as standard. Other drilling patterns PN16 or ANSI Class 150 areavailable as optional. Groove Dimensions confirm to AWWA C606.

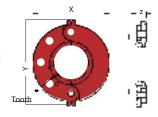
Flange Body is made of Ductile Iron confirming to ASTM A 536 with rated working pressure up to 20 Bar / 300 PSI.

- Grooved Flanges are supplied with Flat Face as Standard. Raised Face Flange available as optional.
- Wingrou Flanges are supplied with Red painted RAL 3000 as standard. Other RAL colours or Galvanised finish is available upon request.

User Responsibility for Product Selection and Suitability

Each user bears final responsibility for making a determination as to the suitability of Wingrou products for a particular end-use application, in accordance with industry stan¬dards and project specifications, and the applicable building codes and related regulations as well as Wingrou performance, mainte-nance, safety, and warning instructions. Nothing in this or any other document, nor any verbal recom-mendation, advice, or opinion from any Wingrou employee, shall be deemed to alter, vary, supersede, or waive any provision of Allied Rubber and Gasket Company's standard conditions of sale, installation guide, or this disclaimer

SPLIT FLANGE ADAPTER



The Wingrou Model 321 Split flange mainly use for the flange connection with the valve, equipment or pipe conversion connection to solve the groove connection and flange connection conversion, installation is simple

and fast.

Figure-321

Bolt tightening sequence: it is important to make flange faces contact parallel. Tighten nuts alternately in the sequence of diagonally opposite pairs as shown below until the flange faces meet and make a metal-to metal contact.

Split flange has small triangular teeth inside the key shoulder to prevent the pipe from rotating. The teeth should be ground off when mating to a rubber-lined flange.

Split Flange require a hard flat face for effective sealing. When the mating surface is not adequate as with the serrated faces of some valves or rubber-faced wafer valves, a sandwich plate (Model 49,) must be used.

Fitting Coating:

Red enamel in Europe, Middle East, Africa, and India. Orange enamel in USA Optional: Hot dipped galvanized

Siz	e	Max. Work	PCD	Gaske	t Seat	[Dimensions	5	Bolt/Nut	Approx.
Nominal Dia.	Actual O.D.	Pressure	С	А	В	Х	Y	Z	Size	Wgt. Each
DN	mm	BAR	mm	mm	mm	mm	mm	mm	mm	kg
Inches	Inches	PSI	inches	Inches	Inches	Inches	Inches	Inches	Inches	Lbs.
50	60.3	20	120.5	64	78	165	218	20	M10X70	1.76
2	2.375	300	4.75	2.520	3.071	6.496	8.583	0.787	³ / ₈ X2 ³ / ₄	3.87
65	73.0	20	140	77	91	178	228	22	M10X70	2.04
21/2	2.875	300	5.51	3.031	3.583	7.008	8.976	0.866	³ / ₈ X2 ³ / ₄	4.50
65	76.1	20	140	80	94	185	238	22	M10X70	2.41
2 ¹ /2	3.000	300	5.51	3.150	3.701	7.283	9.370	0.866	³ / ₈ X2 ³ / ₄	5.30
80	88.9	20	153	93	107	200	250	22	M10X70	2.55
3	3.500	300	6.02	3.661	4.213	7.874	9.843	0.866	3/8X2 ³ /4	5.62
100	114.3	20	191	119	133	229	280	24	M10X70	3.24
4	4.500	300	7.52	4.685	5.236	9.016	11.02	0.945	3/8X2 ³ /4	7.14
125	139.7	20	216	145	159	250	313	22	M12X70	3.49
5	5.500	300	8.50	5.709	6.260	9.843	12.32	0.866	¹ / ₂ X2 ³ / ₄	7.68
125	141.3	20	216	146	160	254	321	26	M12X70	4.39
5	5.563	300	8.50	5.748	6.299	10.00	12.64	1.024	¹ / ₂ X2 ³ / ₄	9.67
150	165.1	20	241	171	185	285	347	24	M12X70	4.55
6	6.500	300	9.49	6.732	7.283	11.22	13.66	0.945	¹ / ₂ X2 ³ / ₄	10.02
150	168.3	20	241	174	188	285	345	26	M12X70	4.73
6	6.625	300	9.49	6.850	7.402	11.22	13.58	1.024	¹ / ₂ X2 ³ / ₄	10.42
200	219.1	20	299	225	242	343	404	30	M12X70	6.95
8	8.625	300	11.77	8.858	9.528	13.50	15.91	1.181	¹ / ₂ X2 ³ / ₄	15.31
250	273.0	20	362.0	275	297	407	472	28	M12 X 70	8.30
10	10.750	300	14.25	10.83	11.69	16.02	18.58	1.101	½ X ¾	18.30
300	323.9	20	431.0	326	352	462	527	28	M12 X 70	9.80
12	12.750	300	16.96	12.83	13.86	18.19	20.75	1.101	½ X ¾	21.60

Maximum working pressure for the fire protection application, approved pressure by related authorities should be used. UL/ULC 300 Psi 2065 kPa/21bars FM 300Psi 2065kPa/21 Bars

User Responsibility for Product Selection and Suitability

Each user bears final responsibility for making a determination as to the suitability of Wingrou products for a particular end-use application, in accordance with industry stan¬dards and project specifications, and the applicable building codes and related regulations as well as Wingrou performance, mainte-nance, safety, and warning instructions. Nothing in this or any other document, nor any verbal recom-mendation, advice,or opinion from any Wingrou employee, shall be deemed to alter, vary, supersede, or waive any provision of Allied Rubber and Gasket Company's standard conditions of sale, installation guide, or this disclaimer

FLANGE ADAPTER

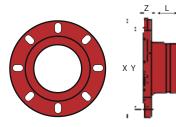


Figure-321G

The Model 321G Flange Adapter Nipple provides a rigid transition from a flanged component to a grooved system.

Confirms to class ANSI 125 lb Flange and BS 4504 class PN 16 flange drilling

Made of ductile iron confirming ASTM A-536, Every lot is metallurgi-cal examined to ensure compliance

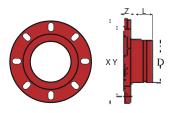
Available with external or internal threaded ends as optional

Pressure ratings confirm to those of style 1N

Fitting Coating:

Red enamel in Europe, Middle East, Africa, and India. Orange enamel in USA Optional: Hot dipped galvanized.

Size		Max. Work		Gaske	t Seat		Dimension	s	Bolt/Nut	Approx.
Nominal Dia.	Actual O.D.	Pressure	L	А	В	х	Y	Z	Size	Wgt. Each
DN	mm	BAR	mm	mm	mm	mm	mm	mm	mm	Lbs
Inches	Inches	PSI	inches	Inches	Inches	Inches	Inches	Inches	Inches	Kg.
50	60.3	20		64	78	165	125	16	M10X70	5.10
2	2.375	300	2.50	2.520	3.071	6.50	4.92	0.63	³ / ₈ X2 ³ / ₄	2.30
65	73.0	20	76	77	91	185	145	16	M10X70	6.53
21/2	2.875	300	2.99	3.031	3.583	7.28	5.70	0.63	³ / ₈ X2 ³ / ₄	2.96
65	76.1	20	76	80	94	185	145	16	M10X70	6.40
21/2	3.000	300	2.99	3.150	3.701	7.28	5.70	0.63	³ /8X2 ³ /4	2.90
80	88.9	20	75	93	107	200	160	16	M10X70	4.79
3	3.500	300	2.95	3.661	4.213	7.87	6.30	0.63	³ /8X2 ³ /4	3.39
100	114.3	20	75	119	133	225	180	16	M10X70	8.49
4	4.500	300	2.95	4.685	5.236	8.86	7.09	0.63	³ / ₈ X2 ³ / ₄	3.85
125	139.7	20	75	145	159	254	210	16	M12X70	14.33
5	5.500	300	2.95	5.709	6.260	10.00	8.27	0.63	$\frac{1}{2}X2^{3}/4$	6.50
125	141.3	20	75	146	160	254	210	16	M12X70	14.33
5	5.563	300	2.95	5.748	6.299	10.00	8.27	0.63	¹ / ₂ X2 ³ / ₄	6.50
150	165.1	20	75	171	185	272	240	16	M12X70	13.86
6	6.500	300	2.95	6.732	7.283	10.71	9.45	0.63	¹ / ₂ X2 ³ / ₄	6.30
150	168.3	20	75	174	188	272	240	16	M12X70	13.86
6	6.625	300	2.95	6.850	7.402	10.71	9.45	0.63	¹ / ₂ X2 ³ / ₄	6.30
200	219.1	20	102	225	242	343	295	22	M12X70	30.99
8	8.625	300	4.00	8.858	9.528	13.50	11.61	0.87	¹ / ₂ X2 ³ / ₄	13.65
250	273.0	20	102	275	297	405	355	24	M12 X 70	15.80
10	10.750	300	4.00	10.83	11.69	15.94	13.97	0.945	½ X ¾	34.83
300	323.9	20	102	326	352	460	410	24	M12 X 70	40.34
12	12.750	300	4.00	12.83	13.86	18.11	16.14	0.945	½ X ¾	18.30



UNIVERSAL FLANGE ADAPTER

Figure-321G

The Wingrou Model 321G Universal Flange Adapter provides a rigid transition from a flanged component to a grooved system. The single unit is compatible for a range of flange types including ANSI Class 125/150, PN10, PN16, and JIS 10K.

Nominal	Pipe				Y : Flange Drilling				Bolt	Size	
				ANSI	PN	JIS	BS				
Size	O.D.	L	X	125 / 150	10 / 16	10K	10E	Z	Dia	No.	Weight
in	in	in	in	in	in	in	in	in	in		Lbs
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm		Kgs
2	2.375	2.50	6.50	4.75	4.92	4.72	4.49	0.63	5/8	4	5.10
50	60.3	64	165	121	125	120	114	16	M16	4	2.30
21/2	2.875	2.99	7.28	5.50	5.70	5.50	5.00	0.63	5/8	4	6.53
65	73.0	76	185	140	145	140	127	16	M16	4	2.96
76.1 mm	3.000	2.99	7.28	5.50	5.70	5.50	5.00	0.63	5/8	4	6.40
70.1 111111	76.1	76	185	140	145	140	127	16	M16	4	2.90
3	3.500	2.95	7.87	6.00	6.30	5.90	5.75	0.63	5/8	4/8	7.47
80	88.9	75	200	152	160	150	146	16	M16	4/8	3.39
4	4.500	2.95	8.86	7.50	7.09	6.89	7.00	0.63	5/8	8	8.49
100	114.3	75	225	191	180	175	178	16	M16	8	3.85
139.7 mm	5.500	2.95	10.00	8.50	8.27	8.27	8.27	0.63	5/8 / 3/4	8	14.33
139.7 111111	139.7	75	254	216	210	210	210	16	M16 / M20	8	6.50
5	5.563	2.95	10.00	8.50	8.27	8.27		0.87	5/8 / 3/4	8	14.33
125	141.3	75	254	216	210	210		22	M16 / M20	8	6.50
165.1 mm	6.500	2.95	10.71	9.50	9.45	9.45	9.30	0.63	3/4	8	13.86
100.1 111111	165.1	75	272	241	240	240	235	16	M20	8	6.30
6	6.625	2.95	10.71	9.50	9.45	9.45		0.63	3/4	8	12.58
150	168.3	75	272	241	240	240		16	M20	8	5.72
8	8.625	4.00	13.50	11.75	11.61	11.42	11.50	0.87	3/4	8 / 12	30.09
200	219.1	102	343	298	295	290	292	22	M20	8 / 12	13.65
000 110	8.516	4.00	13.50	11.75	11.61	11.42		0.87	3/4	8 / 12	30.09
200 JIS	216.3	102	343	298	295	290		22	M20	8 / 12	13.65

GROOVED FITTINGS

HOUSING

Wingrou Grooved Fittings Housings are made of Ductile Iron confirming to ASTM A 536 Gr. 65-45-12 Ductile iron is an ideal material for grooved mechanical components, as it provides similar or greater strength to that of wrought or cast steel materials

- Wingrou Style 355 Grooved Elbow features short center to end dimensions and it helps easier installation in less space.
- Grooved Elbow are primarily designed for fire protection applications, it can also be used for general services.
- Elbow Housings are made of Ductile Iron confirming to ASTM A 536 with rated working pressure up to 20 Bar / 300PSI.
- Wingrou Elbows are supplied with Red painted RAL 3000 as standard. Other RAL colours or Galvanised finish is available upon request.

Chemical Properties

Percent	Carbon	Silicon	Manganese	Phosphorous	Sulphur	Magnesium	Chromium
(%)	C	Si	Mn	P	S	Mg	Cr
Min - Max	3% - 3.9%	2.5% - 3.2%	0.1% - 0.4%	0% - 0.07%	0% - 0.03%	0.03% - 0.06%	0% - 0.1%

Physical Properties

Minimum Tensile Strength	Minimum Yield Strength	Minimum Elongation (%)
448 MPa	310 MPa	12
65,000 PSI	45,000 PSI	12

User Responsibility for Product Selection and Suitability

Each user bears final responsibility for making a determination as to the suitability of Wingrou products for a particular end-use applica-tion, in accordance with industry stan-dards and project specifications, and the applicable building codes and related regulations as well as Wingrou performance, maintenance, safety, and warning instructions. Nothing in this or any other document, nor any verbal recom-mendation, advice, or opinion from any Wingrou employee, shall be deemed to alter, vary, supersede, or waive any provision of Allied Rubber and Gasket Company's standard conditions of sale, installation guide, or this disclaimer

Note

All products to be installed in accordance with current Wingrou installation/assembly instructions. Wingrou reserves the right to change product specifications, designs and standard equipment without notice and without incurring obligations.

UL/FM APPROVED PRESSURE TEMPERATURE RATING

Pipe Type Grooved Type Maximum Working Pressure EN10255 M/H Roll 20 Bar @ 38°C 300 PSI @ 100°F Sch.40 Roll 20 Bar @ 38°C 20 Bar @ 38°C

300 PSI @ 100°F

STD ELBOW90,STD TEE, STD CROSS

Figure-90, 130, 180

Wingrou ductile iron grooved-end fittings are made of ductile iron per ASTM A536 Gr. 65-45-12

Application

 designed to provide minimum pressure drop and uniform strength

Sizes:

• 2", 2½",3od, 3", 4", 5, 6",6od, 8"10",12"

Material

· ductile iron with rust inhibiting paint

Approvals:

- Underwriters Listed
- · Factory Mutual approved

Fitting Coating:

Red enamel in Europe, Middle East, Africa, and India. Orange enamel in USA Optional: Hot dipped galvanized.

Working pressure and End load are total, from all internal and external loads, based on standard weight (ANSI) steel pipe, standard roll or cut grooved in accordance with Wingrou specifications.

Figure- 90S 90 STD Pattern Elbow	Figure- 130S STD Pattern Equal Tee	Figure- 180S STD PatternEqual Cross
		4
о́ш	\$ \frac{1}{4}	0 11

	Size		Std. Elbow	Model 130 S	td. Equal Tee	Model 180Sh	nort Equal Cross
Nominal Di	a. Actual O.D.	CE	Approx.Wgt.	CE	Approx. Wgt.	CE	Approx. Wgt.
DN	mm	mm	kg	mm	kg	mm	kg
Inches	Inches	Inches	Lbs.	Inches	Lbs.	Inches	Lbs.
25	33.4	57	0.3	57	0.5	57	0.6
1	1.315	2.25	0.66	2.25	1.10	2.25	1.32
32	42.4	70	0.5	70	0.7	70	1.0
11/4	1.660	2.75	1.10	2.75	1.54	2.75	2.20
40	48.3	70	0.5	70	0.9	70	1.1
11/2	1.900	2.75	1.10	2.75	1.98	2.75	2.42
50	60.3	83	0.8	83	1.4	83	1.7
2	2.375	3.25	1.76	3.25	3.08	3.25	3.74
65	73.0	95	1.5	95	2.2	95	2.7
21/2	2.875	3.75	3.30	3.75	4.85	3.75	5.95
65	76.1	95	1.7	95	2.4	95	2.8
21/2	3.000	3.75	3.74	3.75	5.29	3.75	6.17
80	88.9	108	2.0	108	3.0	108	4.8
3	3.500	4.25	4.41	4.25	6.61	4.25	10.57
100	108.0	127	3.0	127	5.2	127	7.1
4	4.250	5.00	6.61	5.00	11.45	5.00	15.64
100	114.3	127	3.2	127	5.4	127	7.2
4	4.500	5.00	7.05	5.00	11.89	5.00	15.86
125	133.0	140	5.3	140	8.0	140	9.0
5	5.250	5.50	11.67	5.50	17.62	5.50	19.82
125	139.7	140	5.3	140	8.1	140	9.1
5	5.500	5.50	11.67	5.50	17.84	5.50	20.04
125	141.3	140	5.3	140	8.1	140	9.2
5	5.563	5.50	11.67	5.50	17.84	5.50	20.26
150	159.0	165	7.8	165	10.1	165	12.6
6	6.250	6.50	17.18	6.50	22.25	6.50	27.75
150	165.1	165	7.8	165	10.3	165	12.7
6	6.500	6.50	17.18	6.50	22.69	6.50	27.97
150	168.3	165	7.8	165	10.4	165	12.7
6	6.625	6.50	17.18	6.50	22.91	6.50	27.97
200	219.1	197	13.6	197	21.6	197	24.8
8	8.625	7.75	29.96	7.75	47.58	7.75	54.62
250	273.0	229	28.7	229	44.9	229	55.1
10	10.750	9.00	63.21	9.00	98.90	9.00	121.36
300	323.9	254	33.6	254	60.3	254	72.9
12	12.750	10.00	74.01	10.00	132.82	10.00	160.57

The allowable pipe separation dimension show is for system layout purpose only . Wingrou couplings are considered rigid connections and will not accommodate expansion or contraction of the pipe system.

When assembling Wingrou couplings onto end caps, take additional care to make certain the end cap is fully seated against the gasket end stop

Maximum working pressure for the fire protection application, approved pressure by related authorities should be used. UL/ULC 300 Psi 2065 kPa/21bars FM 300Psi 2065kPa/21 Bars

email: info@wingrou.co.uk / info@wingrou.com

S/R ELBOW, S/R TEE, EQUAL CROSS

Figure-90S,130S,180S,

Wingrou ductile iron grooved-end fittings are made of ductile iron per ASTM A536 Gr. 65-45-12

Application

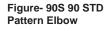
 designed to provide minimum pressure drop and uniform strength

Sizes:

• 2", 2½",3od, 3", 4", 5, 6",6od, 8"10",12"

Material

· ductile iron with rust inhibiting paint


Approvals:

- Underwriters Listed
- Factory Mutual approved

Fitting Coating:

Red enamel in Europe, Middle East, Africa, and India. Orange enamel in USA Optional: Hot dipped galvanized.

Working pressure and End load are total, from all internal and external loads, based on standard weight (ANSI) steel pipe, standard roll or cut grooved in accordance with Wingrou specifications.

Model 90° Std. Elbow Model 130 Std. Equal Tee Model 180Short Equal Cross

	SIZE	Model90°	Std. Elbow	Model 1303	ta. Equal Tee	Model 180St	nort Equal Cross
Nominal Di	a. Actual O.D.	CE	Approx.Wgt.	CE	Approx. Wgt.	CE	Approx. Wgt.
DN	mm	mm	kg	mm	kg	mm	kg
Inches	Inches	Inches	Lbs.	Inches	Lbs.	Inches	Lbs.
25	33.4	57	0.3	57	0.5	57	0.6
1	1.315	2.25	0.66	2.25	1.10	2.25	1.32
32	42.4	70	0.5	70	0.7	70	1.0
11/4	1.660	2.75	1.10	2.75	1.54	2.75	2.20
40	48.3	70	0.5	70	0.9	70	1.1
11/2	1.900	2.75	1.10	2.75	1.98	2.75	2.42
50	60.3	83	0.8	83	1.4	83	1.7
2	2.375	3.25	1.76	3.25	3.08	3.25	3.74
65	73.0	95	1.5	95	2.2	95	2.7
21/2	2.875	3.75	3.30	3.75	4.85	3.75	5.95
65	76.1	95	1.7	95	2.4	95	2.8
21/2	3.000	3.75	3.74	3.75	5.29	3.75	6.17
80	88.9	108	2.0	108	3.0	108	4.8
3	3.500	4.25	4.41	4.25	6.61	4.25	10.57
100	108.0	127	3.0	127	5.2	127	7.1
4	4.250	5.00	6.61	5.00	11.45	5.00	15.64
100	114.3	127	3.2	127	5.4	127	7.2
4	4.500	5.00	7.05	5.00	11.89	5.00	15.86
125	133.0	140	5.3	140	8.0	140	9.0
5	5.250	5.50	11.67	5.50	17.62	5.50	19.82
125	139.7	140	5.3	140	8.1	140	9.1
5	5.500	5.50	11.67	5.50	17.84	5.50	20.04
125	141.3	140	5.3	140	8.1	140	9.2
5	5.563	5.50	11.67	5.50	17.84	5.50	20.26
150	159.0	165	7.8	165	10.1	165	12.6
6	6.250	6.50	17.18	6.50	22.25	6.50	27.75
150	165.1	165	7.8	165	10.3	165	12.7
6	6.500	6.50	17.18	6.50	22.69	6.50	27.97
150	168.3	165	7.8	165	10.4	165	12.7
6	6.625	6.50	17.18	6.50	22.91	6.50	27.97
200	219.1	197	13.6	197	21.6	197	24.8
8	8.625	7.75	29.96	7.75	47.58	7.75	54.62
250	273.0	229	28.7	229	44.9	229	55.1
10	10.750	9.00	63.21	9.00	98.90	9.00	121.36
300	323.9	254	33.6	254	60.3	254	72.9
12	12.750	10.00	74.01	10.00	132.82	10.00	160.57
	1						

The allowable pipe separation dimension show is for system layout purpose only . Wingrou couplings are considered rigid connections and will not accommodate expansion or contrac-tion of the pipe system.

When assembling Wingrou couplings onto end caps, take additional care to make certain the end cap is fully seated against the gasket end stop

45 ELBOW,22.5 ELBOW,11.25 ELBOW

Figure-120,110,105

WINGROU short radius fittings, while primarily designed for fire protection applications can also be used for general service requirements.

Application

 designed to provide minimum pressure drop and uniform strength

Sizes:

• 2", 2½",3od, 3", 4", 5, 6",6od, 8"

Material:

ductile iron with rust inhibiting paint

Approvals:

- · Underwriters Listed
- · Factory Mutual approved

Working pressure and End load are total, from all internal and external loads, based on standard weight (ANSI) steel pipe, standard roll or cut grooved in accordance with Wingrou specifications.

Working pressure and End load are total, from all internal and external loads, based on standard weight (ANSI) steel pipe, standard roll or cut grooved in accordance with Wingrou specifications.

The allowable pipe separation dimension show is for system layout purpose only. Wingrou couplings are considered rigid connections and will not accommodate expansion or contraction of the pipe system.

Fitting Coating:

Red enamel in Europe, Middle East, Africa, and India. Orange enamel in USA Optional: Hot dipped galvanized

Figure- 120 45° Elbow

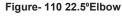
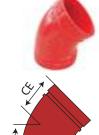
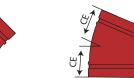
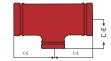




Figure- 105 11.25°Elbow

Si	ze	Model 120	45° Elbow	Model 110	22.5°Elbow	Model 10	5 11.25° Elbow
Nominal Dia.	Actual O.D.	CE	Approx. Wgt.	CE	Approx. Wgt.	CE	Approx. Wgt.
DN Inches	mm Inches	mm Inches	kg Lbs.	mm Inches	kg Lbs.	mm Inches	kg Lbs.
50	60.3	70	0.6	70	0.9	70	1.1
2	2.375	2.75	1.32	2.75	1.98	2.75	2.42
65	73.0	76	0.8	76	1.2	76	1.5
21/2	2.875	3.00	1.76	3.00	2.64	3.00	3.30
65	76.1	76	1.0	76	1.4	76	1.8
21/2	3.000	3.00	2.20	3.00	3.08	3.00	3.96
80	88.9	86	1.3	86	1.7	86	2.3
3	3.500	3.40	2.86	3.40	3.74	3.40	5.07
100	108.0	102	2.0	102	2.6	102	3.3
4	4.250	4.00	4.41	4.00	5.73	4.00	7.27
100	114.3	102	2.1	102	2.8	102	3.6
4	4.500	4.00	4.63	4.00	6.17	4.00	7.93
125	133.0	124	3.4	124	4.3	124	5.8
5	5.250	4.88	7.49	4.88	9.47	4.88	12.78
125	139.7	124	3.5	124	4.4	124	6.0
5	5.500	4.88	7.71	4.88	9.69	4.88	13.22
125	141.3	124	3.6	124	4.5	124	6.1
5	5.563	4.88	7.93	4.88	9.91	4.88	13.44
150	159.0	140	5.2	140	6.7	140	8.7
6	6.250	5.50	11.45	5.50	14.76	5.50	19.16
150	165.1	140	5.4	140	7.0	140	9.0
6	6.500	5.50	11.89	5.50	15.42	5.50	19.82
150	168.3	140	5.6	140	7.2	140	9.2
6	6.625	5.50	12.33	5.50	15.86	5.50	20.26
200	219.1	173	10.5	173	14.0	173	16.5
8	8.625	6.80	23.13	6.80	30.84	6.80	36.34

GROOVED REDUCING TEE


Figure-131,131R

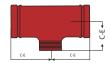


Figure- 131 Grooved Red. Tee Figure- 131R Threaded Red. Tee

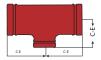
Figure- 131 Grooved Reducing Tee

educing Tee Figure-131R Threaded Reducing Tee

Size			Mode Reduc	el 131 ing Tee		el 131N cing Tee
Run Pipe X Branch Pipe			CE	Approx. Wgt.	CE	Approx. Wgt.
	mm X mm Inches X Inches		mm Inches	kg Lbs.	mm Inches	kg Lbs.
42.4	Х	33.4	57	0.5	57	0.6
11/4		1	2.25	1.10	2.25	1.32
48.3 1½	Χ	33.4 1	70 2.75	0.6 1.32	70 2.75	0.6 1.32
		42.4	70	0.7	70	0.7
		11/4	2.75	1.54	2.75	1.54
60.3	Χ	33.4	70	0.7	70	0.8
2		1	2.75	1.54	2.75	1.76
		42.4 1 ¹ / ₄	70 2.75	0.8 1.76	70 2.75	0.8 1.76
		48.3				
		48.3 1½	70 2.75	0.8 1.76	70 2.75	0.8 1.76
73.0	Х	33.4	76	1.1	76	1.1
21/2		1	3.00	2.42	3.00	2.42
		42.4 11⁄4	76 3.00	1.1 2.42	76 3.00	1.1 2.42
		48.3 1½	76 3.00	1.2 2.64	76 3.00	1.2 2.64
		60.3 2	76 3.00	1.2 2.64	76 3.00	1.2 2.64
76.1	Χ	33.4	76	1.2	76	1.2
21/2		1	3.00	2.64	3.00	2.64
		42.4 1 ¹ / ₄	76 3.00	1.2 2.64	76 3.00	1.3 2.86
		48.3	76	1.2	76	1.5
		11/2	3.00	2.64	3.00	3.30
		60.3 2	76 3.00	1.2 2.64	76 3.00	1.6 3.52
88.9	Х	33.4	86	1.4	86	1.4
3	^	1	3.40	3.08	3.40	3.08
		42.4	86	1.4	86	1.5
		11/4	3.40	3.08	3.40	3.30
		48.3	86	1.5	86	1.6
		11/2	3.40	3.30	3.40	3.52
		73.0 2½	86 3.40	1.6 3.52	86 3.40	1.6 3.52
		76.1 2½	86 3.40	1.6 3.52	86 3.40	1.6 3.52
114.3 4	Х	33.4 1	102 4.00	2.5 5.51	102 4.00	2.5 5.51

Size	Mode Reduci			del 131N ucing Tee
Run Pipe X Branch Pipe	CE	Approx. Wgt.	CE	Approx. Wgt.
mm X mm	mm	kg	mm	kg
Inches X Inches	Inches	Lbs.	Inches	Lbs.
114.3 X 42.4	102	2.5	102	2.5
4 1 ¹ / ₄	4.00	5.51	4.00	5.51
48.3	102	2.5	102	2.6
1½	4.00	5.51	4.00	5.73
60.3	102	2.6	102	2.6
2	4.00	5.73	4.00	5.73
73.0	102	2.6	102	2.7
2 ¹ / ₂	4.00	5.73	4.00	5.95
76.1	102	2.6	102	2.7
2½	4.00	5.73	4.00	5.95
88.9	102	2.7	102	2.7
3	4.00	5.95	4.00	5.95
139.7 X 33.4	124	4.1	124	4.1
5 1	4.88	9.03	4.88	9.03
42.4	124	4.1	124	4.2
1 ¹ / ₄	4.88	9.03	4.88	9.25
48.3	124	4.2	124	4.3
1½	4.88	9.25	4.88	9.47
60.3	124	4.3	124	4.3
2	4.88	9.47	4.88	9.47
76.1	124	4.4	124	4.4
2½	4.88	9.69	4.88	9.69
88.9	124	4.5	124	4.6
3	4.88	9.91	4.88	10.13
114.3 4	124 4.88	4.6 10.13	1 1	
141.3 X 33.4	124	4.1	124	4.1
5 1	4.88	9.03	4.88	9.03
42.4	124	4.1	124	4.2
1 ¹ / ₄	4.88	9.03	4.88	9.25
48.3	124	4.2	124	4.3
1½	4.88	9.25	4.88	9.47
60.3	124	4.3	124	4.3
2	4.88	9.47	4.88	9.47
73.0	124	4.4	124	4.4
2½	4.88	9.69	4.88	9.69
88.9	124	4.5	124	4.6
3	4.88	9.91	4.88	10.13
114.3 4	124 4.88	4.6 10.13		

REDUCING TEE


Figure-131,131R

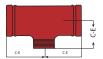


Figure- 131 Grooved Red. Tee Figure- 131R Threaded Red. Tee

Figure- 131 Grooved Reducing Tee Figure-131R Threaded Reducing Tee

Size		Mode Reduci	el 131 ing Tee		el 131N cing Tee	
Run Pipe	Run Pipe X Branch Pipe			Approx. Wgt.	CE	Approx. Wgt.
mm X mm Inches X Inches		mm Inches	kg Lbs.	mm Inches	kg Lbs.	
42.4	Х	33.4	57	0.5	57	0.6
11/4		1	2.25	1.10	2.25	1.32
48.3 1½	Χ	33.4 1	70 2.75	0.6 1.32	70 2.75	0.6 1.32
		42.4	70	0.7	70	0.7
		11/4	2.75	1.54	2.75	1.54
60.3	Χ	33.4	70	0.7	70	0.8
2		1	2.75	1.54	2.75	1.76
		42.4	70	0.8	70	0.8
		11/4	2.75	1.76	2.75	1.76
		48.3 1½	70 2.75	0.8 1.76	70 2.75	0.8 1.76
73.0	Х	33.4	76	1.1	76	1.1
21/2		1	3.00	2.42	3.00	2.42
		42.4 1 ¹ / ₄	76 3.00	1.1 2.42	76 3.00	1.1 2.42
		48.3	76	1.2	76	1.2
		11/2	3.00	2.64	3.00	2.64
		60.3 2	76 3.00	1.2 2.64	76 3.00	1.2 2.64
76.1	Х	33.4	76	1.2	76	1.2
21/2		1	3.00	2.64	3.00	2.64
		42.4	76	1.2	76	1.3
		11/4	3.00	2.64	3.00	2.86
		48.3	76	1.2	76	1.5
		11/2	3.00	2.64	3.00	3.30
		60.3 2	76 3.00	1.2 2.64	76 3.00	1.6 3.52
88.9	Х	33.4	86	1.4	86	1.4
3		1	3.40	3.08	3.40	3.08
		42.4	86	1.4	86	1.5
		11/4	3.40	3.08	3.40	3.30
		48.3	86	1.5	86	1.6
		11/2	3.40	3.30	3.40	3.52
		73.0 2½	86 3.40	1.6 3.52	86 3.40	1.6 3.52
		76.1 2½	86 3.40	1.6 3.52	86 3.40	1.6 3.52
114.3 4	Χ	33.4 1	102 4.00	2.5 5.51	102 4.00	2.5 5.51

Size	Mode Reduci		1	del 131N ucing Tee
Run Pipe X Branch Pipe	CE	Approx. Wgt.	CE	Approx. Wgt.
mm X mm	mm	kg	mm	kg
Inches X Inches	Inches	Lbs.	Inches	Lbs.
114.3 X 42.4	102	2.5	102	2.5
4 11/4	4.00	5.51	4.00	5.51
48.3	102	2.5	102	2.6
1½	4.00	5.51	4.00	5.73
60.3	102	2.6	102	2.6
2	4.00	5.73	4.00	5.73
73.0	102	2.6	102	2.7
2½	4.00	5.73	4.00	5.95
76.1	102	2.6	102	2.7
2⅓2	4.00	5.73	4.00	5.95
88.9	102	2.7	102	2.7
3	4.00	5.95	4.00	5.95
139.7 X 33.4	124	4.1	124	4.1
5 1	4.88	9.03	4.88	9.03
42.4	124	4.1	124	4.2
1 ¹ / ₄	4.88	9.03	4.88	9.25
48.3	124	4.2	124	4.3
1½	4.88	9.25	4.88	9.47
60.3	124	4.3	124	4.3
2	4.88	9.47	4.88	9.47
76.1	124	4.4	124	4.4
2½	4.88	9.69	4.88	9.69
88.9	124	4.5	124	4.6
3	4.88	9.91	4.88	10.13
114.3 4	124 4.88	4.6 10.13		
141.3 X 33.4	124	4.1	124	4.1
5 1	4.88	9.03	4.88	9.03
42.4	124	4.1	124	4.2
11⁄4	4.88	9.03	4.88	9.25
48.3	124	4.2	124	4.3
1½	4.88	9.25	4.88	9.47
60.3	124	4.3	124	4.3
2	4.88	9.47	4.88	9.47
73.0	124	4.4	124	4.4
2⅓2	4.88	9.69	4.88	9.69
88.9	124	4.5	124	4.6
3	4.88	9.91	4.88	10.13
114.3 4	124 4.88	4.6 10.13		

GROOVED CONCENTRIC REDUCER

Figure-240,240N

Figure-240

Figure- 240N oncentric Reducer

Figure- 240N Threaded Concentric Reducer

	Concentric	Reducer	Concentric Reducer				
Size		Concentric ducer		Model 240N Concentric Reducer			
Run Pipe X Branch P	ipe EE	Approx. Wgt.	EE	Approx. Wgt.			
mm X mm	mm	kg	mm	kg			
Inches X Inches	Inches	Lbs.		Lbs.			
42.4 X 33.4	64	0.2	64	0.3			
1 ¹ / ₄ 1	2.50	0.44	2.50	0.66			
48.3 X 33.4	64	0.3	64	0.3			
1 ¹ / ₂ 1	2.50	0.66	2.50	0.66			
42.4	64	0.3	64	0.4			
1 ¹ / ₄	2.50	0.66	2.50	0.88			
60.3 X 33.4	64	0.3	64	0.4			
2 1	2.50	0.66	2.50	0.88			
42.4	64	0.4	64	0.4			
1 ¹ / ₄	2.50	0.88	2.50	0.88			
48.3	64	0.4	64	0.4			
1 ¹ / ₂	2.50	0.88	2.50	0.88			
73.0 X 33.4	64	0.5	64	0.5			
2 ¹ /2 1	2.50	1.10	2.50	1.10			
42.4	64	0.5	64	0.5			
1 ¹ / ₄	2.50	1.10	2.50	1.10			
48.3	64	0.5	64	0.5			
1 ¹ / ₂	2.50	1.10	2.50	1.10			
60.3	64	0.5	64	0.5			
	2.50	1.10	2.50	1.10			
76.1 X 33.4	64	0.5	64	0.5			
2 ¹ / ₂ 1	2.50	1.10	2.50	1.10			
42.4	64	0.5	64	0.5			
1 ¹ / ₄	2.50	1.10	2.50	1.10			
48.3	64	0.5	64	0.6			
1 ¹ / ₂	2.50	1.10	2.50	1.32			
60.3	64	0.6	64	0.6			
	2.50	1.32	2.50	1.32			
88.9 X 33.4	64	0.6	64	0.6			
3 1	2.50	1.32	2.50	1.32			
42.4	64	0.6	64	0.6			
1 ¹ / ₄	2.50	1.32	2.50	1.32			
48.3	64	0.6	64	0.7			
1 ¹ / ₂	2.50	1.32	2.50	1.54			
60.3	64	0.7	64	0.7			
	2.50	1.54	2.50	1.54			
73.0	64	0.7	64	0.7			
2 ¹ / ₂	2.50	1.54	2.50	1.54			
76.1	64	0.7	64	0.7			
2 ¹ / ₂	2.50	1.54	2.50	1.54			
114.3 X 33.4	76	0.9	76	0.9			
4 1	3.00	1.98	3.00	1.98			

	Size		Concentric lucer	Model 240N Concentri Reducer				
Run Pipe	X Branch Pipe	EE	Approx. Wgt.	EE	Approx. Wgt.			
mm	X mm	mm	kg	mm	kg			
Inches	X Inches	Inches	Lbs.	Inches	Lbs.			
114.3	X 42.4	76	0.9	76	1.0			
4	1 ¹ / ₄	3.00	1.98	3.00	2.20			
	48.3	76	1.0	76	1.0			
	1 ¹ / ₂	3.00	2.20	3.00	2.20			
	60.3	76	1.0	76	1.1			
	2	3.00	2.20	3.00	2.42			
	73.0	76	1.1	76	1.1			
	2 ¹ / ₂	3.00	2.42	3.00	2.42			
	76.1	76	1.1	76	1.1			
	2 ¹ /2	3.00	2.42	3.00	2.42			
	88.9	76	1.1	76	1.1			
	3	3.00	2.42	3.00	2.42			
139.7	X 33.4	89	1.4	89	1.4			
5	1	3.50	3.08	3.50	3.08			
	42.4	89	1.4	89	1.4			
	1 ¹ /4	3.50	3.08	3.50	3.08			
	48.3	89	1.4	89	1.5			
	1 ¹ / ₂	3.50	3.08	3.50	3.30			
	60.3	89	1.5	89	1.5			
	2	3.50	3.30	3.50	3.30			
	76.1	89	1.5	89	1.6			
	2 ¹ /2	3.50	3.30	3.50	3.52			
	88.9	89	1.6	89	1.6			
	3	3.50	3.52	3.50	3.52			
	114.3 4	89 3.50	1.7 3.74					
141.3	X 33.4	89	1.4	89	1.4			
5		3.50	3.08	3.50	3.08			
	42.4	89	1.4	89	1.4			
	1 ¹ / ₄	3.50	3.08	3.50	3.08			
	48.3	89	1.4	89	1.5			
	1 ¹ / ₂	3.50	3.08	3.50	3.30			
	60.3	89 3.50	1.5 3.30	89 3.50	1.5 3.30			
	73.0	89	1.5	89	1.6			
	2 ¹ / ₂	3.50	3.30	3.50	3.52			
	88.9	89 3.50	1.6 3.52	89 3.50	1.6 3.52			
	114.3 4	89 3.50	1.7 3.74					

GROOVED CONCENTRIC REDUCERa

Figure- 240,240N

Figure-240 Concentric

Figure-240N Concentric Reducer

Figure-240 Concentric Reducer

Figure- 240N Concentric Reducer

Size	Model 240 Concentric Reducer			Model 240N Concentric Reducer		Size		Concentric ucer	Model 240N Concentric Reducer	
Run Pipe X Branch Pipe	EE	Approx. Wgt.	EE	Approx. Wgt.	Br	anch Pipe	EE	Approx. Wgt.	EE	Approx. Wgt.
mm X mm Inches X Inches	mm Inches	kg Lbs.	mm Inches	kg Lbs.	Inches	nm X mm X Inches	mm Inches	kg Lbs.	mm Inches	kg Lbs.
165.1 X 33.4 6 1	102 4.00	2.1 4.66	102 4.00	2.1 4.66	219.1 8	X 76.1 2 ¹ /2	127 5.00	4.3 9.47	127 5.00	4.5 9.91
42.4 1 ¹ / ₄	102 4.00	2.1 4.66	102 4.00	2.2 4.85		88.9 3	127 5.00	4.5 9.91	127 5.00	4.5 9.91
48.3 1 ¹ / ₂	102 4.00	2.2 4.85	102 4.00	2.2 4.85		114.3	127 5.00	4.6 10.13		
60.3 2	102 4.00	2.2 4.85	102 4.00	2.3 5.07		139.7 5	127 5.00	4.8 10.57		
76.1 2 ¹ / ₂	102 4.00	2.3 5.07	102	2.3 5.07		141.3		4.8 10.57		
88.9 3	102 4.00	2.3 5.07	102 4.00	2.4 5.29		165.1	127 5.00	5.0		
114.3	102 4.00	2.4 5.29				168.3		5.0		
139.7	102 4.00	2.7 5.99			273.0 10	X 114.3	152 6.00	7.5 16.52		
168.3 X 33.4 6 1	102 4.00	2.1 4.66	102 4.00	2.2 4.85		139.7 5	152 6.00	7.6 16.74		
42.4 1 ¹ / ₄	102 4.00	2.1 4.66	102 4.00	2.2 4.85		141.3	152 6.00	7.6 16.74		
48.3 1 ¹ / ₂	102 4.00	2.2 4.85	102 4.00	2.2 4.85		165.1	152 6.00	7.8 17.18		
60.3 2	102 4.00	2.2 4.85	102 4.00	2.3 5.07		168.3		7.8 17.18		
73.0 2 ¹ / ₂	102 4.00	2.3 5.07	102 4.00	2.3 5.07		219.1	152 6.00	8.8 19.38		
88.9 3	102 4.00	2.3 5.07	102 4.00	2.4 5.29	323.9 12	X 114.3		9.9		
114.3 4	102 4.00	2.4 5.29			12	139.7	178 7.00	10.0		
141.3 5	102 4.00	2.7 5.99				141.3		10.0		
219.1 X 33.4 8 1	127 5.00	4.1 9.03	127 5.00	4.2 9.25		165.1	178 7.00	10.2		
42.4 1 ¹ / ₄	127 5.00	4.2 9.25	127 5.00	4.3 9.47		168.3		10.3 22.69		
48.3 1 ¹ / ₂	127 5.00	4.2 9.25	127 5.00	4.3 9.47		219.1	178 7.00	11.2		
60.3	127 5.00	4.3 9.47	127 5.00	4.4 9.69		273.0 10		13.8		
73.0 2 ¹ / ₂	127 5.00	4.3 9.47	127 5.00	4.4 9.69		10	7.00	30.40		

Maximum working pressure for the fire protection application, approved pressure by related authorities should be used. UL/ULC 300 Psi 2065 kPa/21bars FM 300Psi 2065kPa/21 Bars

email: info@wingrou.co.uk/info@wingrou.com

GROOVED ECCENTRIC REDUCER

Figure-230,230N

Model 230N ThreadedConcentric Reducer

Model 230 Eccentric Reducer

Model 230N Threaded Concentric Reducer

	Size		Model 230 Ed	ccentric Reducer	Model 230N	Model 230N Eccentric Reduce		
Run Pipe	Run Pipe X Branch Pipe			Approx. Wgt.	EE	Approx. Wgt.		
mm Inches	X X	mm Inches	mm Inches	kg Lbs.	mm Inches	kg Lbs.		
42.4 1 ¹ / ₄	Х	33.4 1	64 2.50	0.2 0.44	64 2.50	0.3 0.66		
48.3 1 ¹ / ₂	Х	33.4 1	64 2.50	0.3 0.66	64 2.50	0.3 0.66		
		42.4 1 ¹ / ₄	64 2.50	0.3 0.66	64 2.50	0.4 0.88		
60.3 2	Х	33.4 1	64 2.50	0.3 0.66	64 2.50	0.4 0.88		
		42.4 1¹/ ₄	64 2.50	0.4 0.88	64 2.50	0.4 0.88		
		48.3 1 ¹ / ₂	64 2.50	0.4 0.88	64 2.50	0.4 0.88		
73.0 2 ¹ / ₂	Χ	33.4 1	64 2.50	0.5 1.10	64 2.50	0.5 1.10		
		42.4 1 ¹ / ₄	64 2.50	0.5 1.10	64 2.50	0.5 1.10		
		48.3 1 ¹ / ₂	64 2.50	0.5 1.10	64 2.50	0.5 1.10		
		60.3	64 2.50	0.5 1.10	64 2.50	0.5 1.10		
76.1 2 ¹ / ₂	Х	33.4 1	64 2.50	0.5 1.10	64 2.50	0.5 1.10		
		42.4 1 ¹ / ₄	64 2.50	0.5 1.10	64 2.50	0.5 1.10		
		48.3 1 ¹ / ₂	64 2.50	0.5 1.10	64 2.50	0.6 1.32		
		60.3	64 2.50	0.6 1.32	64 2.50	0.6 1.32		
88.9 3	х	33.4 1	64 2.50	0.6 1.32	64 2.50	0.6 1.32		
		42.4 1 ¹ / ₄	64 2.50	0.6 1.32	64 2.50	0.6 1.32		
		48.3 1 ¹ / ₂	64 2.50	0.6 1.32	64 2.50	0.7 1.54		
		60.3	64 2.50	0.7 1.54	64 2.50	0.7 1.54		
108.0 4	Х	33.4 1	76 3.00	0.9 1.98	76 3.00	0.9 1.98		
		42.4 1¹/ ₄	76 3.00	0.9 1.98	76 3.00	1.0 2.20		
		48.3 1 ¹ / ₂	76 3.00	1.98 1.0 2.20	76 3.00	1.0 2.20		

Size	Wiodel 230 ECC	centric Reducer	Model 230N Eccentric Reducer			
Run Pipe X Branch Pipe	EE	Approx. Wgt.	EE	Approx. Wgt.		
mm χ m	mm	kg	mm	kg		
Inches χ Inches	Inches	Lbs.	Inches	Lbs.		
108.0 X 33.4	76	0.9	76	0.9		
4 1	3.00	1.98	3.00	1.98		
42.4	76	0.9	76	1.0		
1 ¹ / ₄	3.00	1.98	3.00	2.20		
48.3	76	1.0	76	1.0		
1 ¹ / ₂	3.00	2.20	3.00	2.20		
60.3	76	1.0	76	1.1		
2	3.00	2.20	3.00	2.42		
76.1	76	1.1	76	1.1		
2 ¹ / ₂	3.00	2.42	3.00	2.42		
88.9	76	1.1	76	1.1		
3	3.00	2.42	3.00	2.42		
114.3 X 33.4	76	0.9	76	0.9		
4 1	3.00	1.98	3.00	1.98		
42.4	76	0.9	76	1.0		
1 ¹ / ₄	3.00	1.98	3.00	2.20		
48.3	76	1.0	76	1.0		
1 ¹ / ₂	3.00	2.20	3.00	2.20		
60.3	76	1.0	76	1.1		
2	3.00	2.20	3.00	2.42		
73.0	76	1.1	76	1.1		
2 ¹ / ₂	3.00	2.42	3.00	2.42		
76.1	76	1.1	76	1.1		
2 ¹ / ₂	3.00	2.42	3.00	2.42		
88.9	76	1.1	76	1.1		
3	3.00	2.42	3.00	2.42		
139.7 X 60.3	89	1.5	89	1.5		
5 2	3.50	3.30	3.50	3.30		
76.1	89	1.5	89	1.5		
2 ¹ / ₂	3.50	3.30	3.50	3.30		
88.9	89	1.6	89	1.6		
3	3.50	3.52	3.50	3.52		
108.0 4	89 3.50	1.7 3.74	1 1			
114.3 4	89 3.50	1.7 3.74	1 1			
141.3 X 60.3	89	1.5	89	1.5		
5 2	3.50	3.30	3.50	3.30		
73.0	89	1.5	89	1.6		
2 ¹ / ₂	3.50	3.30	3.50	3.52		
88.9	89	1.6	89	1.6		
3	3.50	3.52	3.50	3.52		
114.3 4	89 3.50	1.7 3.74				

GROOVED ECCENTRIC REDUCER

Figure-230,230N

Model 230N Threaded Concentric Model 230 Eccentric Model 230N Threaded Concentric

				Reducer		Reduc	er 		Reduc	er	Ke	ducer	
	Size		Model 240 Co	oncentric Reducer	Model 240N	NConcentric Reducer		Size		Model 230 Eccentric Reducer		Model230N	NEccentric Reduce
Run Pipe	X Bra	nch Pipe	EE	Approx. Wgt.	EE	Approx. Wgt.	Run Pipe	Х	Branch Pipe	EE	Approx. Wgt.	EE	Approx. Wgt.
mm	Χ	mm	mm	kg	mm	kg	mm	Х	mm	mm	kg	mm	kg
Inches	Х	Inches	Inches	Lbs.	Inches	Lbs.		X	Inches	Inches	Lbs.	Inches	Lbs.
165.1	Х	60.3	102	2.2	102	2.3							
6		2	4.00	4.85	4.00	5.07	273.0 10	Х	108.0 4	152 6.00	7.5 16.52		
		76.1	102	2.3	102	2.3	10		4	0.00	10.32		
		21/2	4.00	5.07	4.00	5.07			114.3	152	7.5		
		88.9	102	2.3	102	2.4			4	6.00	16.52		
		3	4.00	5.07	4.00	5.29			133.0	152	7.6		
		114.3	102	2.4					5	6.00	16.74		
		114.3 4	102 4.00	2.4 5.29					139.7	152	7.6		
		139.7	102	2.7					5	6.00	16.74		
		5	4.00	5.99					141.3	152	7.6		
				-					5	6.00	16.74		
168.3 6	Х	60.3 2	102 4.00	2.2 4.85	102 4.00	2.3 5.07			159.0	152	7.8		
			4.00	4.83	4.00	3.07			6	6.00	17.18		
		73.0	102	2.3	102	2.3				 			
		21/2	4.00	5.07	4.00	5.07			165.1	152	7.8		
		88.9	102	2.3	102	2.4			6	6.00	17.18		
		3	4.00	5.07	4.00	5.29			168.3	152	7.8		
		114.3	102	2.4					6	6.00	17.18		
		4	4.00	5.29					219.1	152	8.8		
		141.3	102	2.7					8	6.00	19.38		
		5	4.00	5.99			323.9	Х	108.0	178	9.9		
219.1	Х	60.3	127	4.3	127	4.4	12	^	4	7.00	21.81		
8		2	5.00	9.47	5.00	9.69							
		73.0	427	1.2	407				114.3	178	9.9		
		2 ¹ / ₂	127 5.00	4.3 9.47	127 5.00	4.4 9.69			4	7.00	21.81		
									133.0	178	10.0		
		88.9 3	127 5.00	4.5 9.91	127 5.00	4.5 9.91			5	7.00	22.03		
			+						139.7	178	10.0		
		108.0 4	127 5.00	4.6 10.13					5	7.00	22.03		
		7	3.00	10.13					141.3	178	10.0		
		133.0	127	4.8					5	7.00	22.03		
		5	5.00	10.57					159.0	178	10.2		
		139.7	127	4.8					6	7.00	22.47		
		5	5.00	10.57						1			
		141.3	127	4.8					165.1	178	10.2 22.47		
		5	5.00	10.57					6	7.00			
		159.0	127	5.0					168.3	178	10.3		
		6	5.00	11.00					6	7.00	22.69		
		165.1	127	5.0					219.1	178	11.2		
		6	5.00	11.00					8	7.00	24.67		
		168.3	127	5.0					273.0	178	13.8		
		6	5.00	11.00			1		10	7.00	30.40		

Maximum working pressure for the fire protection application, approved pressure by related authorities should be used. UL/ULC 300 Psi 2065 kPa/21bars FM 300Psi 2065kPa/21 Bars

email: info@wingrou.co.uk / info@wingrou.com

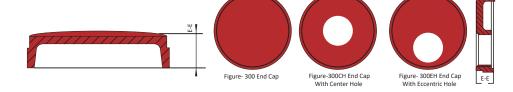

GROOVED END CAP, CAP WITH HOLE

Figure-300,300CH,300EH

Wingrou Model 300EH End Cap with hole is an ideal transition fittings when a large reduction is required such as 6 x 1", 4 x 1"Etc.

The model 300EH can be used as an alterna ve to expensive swaged nipple

Figure-300 End Cap

Figure- 300EH Transition Cap

Figure- 300CH End Cap With Center Hole

Siz	Size		00 End Cap		00CH End Cap enter Hole	Model 300EH End Cap With Eccentric Hole		
Nominal Dia.	Actual O.D.	Т	Approx. Wgt.	Т	Approx. Wgt.	Т	Approx. Wgt.	
DN	mm	mm	kg	mm	kg	mm	kg	
Inches	Inches	Inches	Lbs.	Inches	Lbs.	Inches	Lbs.	
25	33.4	28	0.1					
1	1.315	1.10	0.22					
32	424.	28	0.13					
11/4	1.660	1.10	0.29					
40	48.3	28	0.15					
11/2	1.900	1.10	0.33					
50	60.3	37	0.22	25	0.31	25	0.25	
2	2.375	1.46	0.48	1.00	0.68	1.00	0.55	
65	73.0	37	0.3	25	0.36	25	0.36	
21/2	2.875	1.46	0.66	1.00	0.79	1.00	0.79	
65	76.1	37	0.32	25	0.38	25	0.38	
21/2	3.000	1.46	0.7	1.00	0.84	1.00	0.84	
80	88.9	41	0.41	25	0.52	25	0.52	
3	3.500	1.61	0.9	1.00	1.15	1.00	1.15	
100	108.0	51	0.69	25	0.8	25	0.8	
4	4.250	2.00	1.52	1.00	1.76	1.00	1.76	
100	114.3	51	0.71	25	0.82	25	0.82	
4	4.500	2.00	1.56	1.00	1.81	1.00	1.81	
125	133.0	51	1.04	25	1.15	25	1.15	
5	5.250	2.00	2.29	1.00	2.53	1.00	2.53	
125	139.7	51	1.11	25	1.23	25	1.23	
5	5.500	2.00	2.44	1.00	2.71	1.00	2.71	
125	141.3	51	1.12	25	1.24	25	1.24	
5	5.563	2.00	2.47	1.00	2.73	1.00	2.73	
150	159.0	55	1.38	25	1.56	25	1.56	
6	6.250	2.17	3.04	1.00	3.44	1.00	3.44	
150	165.1	55	1.45	25	1.68	25	1.68	
6	6.500	2.17	3.19	1.00	3.7	1.00	3.7	
150	168.3	55	1.51	25	1.72	25	1.72	
6	6.625	2.17	3.33	1.00	3.79	1.00	3.79	
200	219.1	68	3.13	30	3.71	30	3.71	
8	8.625	13.00	6.89	1.18	8.17	1.18	8.17	
250	273.0	75	5.52	32	6.17	32	6.17	
10	10.750	2.95	12.16	1.25	13.59	1.25	13.59	
300	323.9	81	8.44	32	9.73	32	9.73	
12	12.750	3.20	18.59	1.25	21.43	1.25	21.43	

GROOVED EXPANSION JOINT

Expansion Joint

The Model 1N and 1NH Expansion Joint is a combination of couplings and specially machined pipe nipples that are joined in a series to accommodate the expansion and contraction of a piping system. Standard units are comprised of either Model 1N and 1NH flexible couplings units are also available. The components are epoxy coated (RAL3000 red) for ease of use and longer life. The Model 1N is designed only for use on straight pipe runs and require independent supports and or guides to prevent deflection.

Function

- · Allows for linear/axial expansion and compression within a piping system.
- Provides increased linear movement capabilities when compared to standard flexible grooved joints.

PRODUCT DESCRIPTION

Available Sizes

• 11/2" - 12"/DN40 - DN300

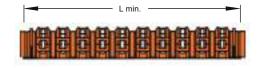
Pipe Material

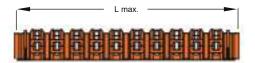
· Carbon steel

Material Gaske

· EPDM Gasket

Coatings


Housings (specify choice):


Red enamel in Europe, Middle East, Africa, and India. Orange enamel in USA Optional: Hot dipped galvanized.

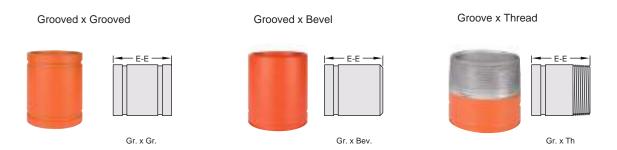
Fitting Coating:

RAL 3000Red Paint Europe, Middle East, Africa, and India. Orange enamel in USA Optional: Hot dipped galvanized.

Housing:

Standard: Ductile iron conforming to ASTM A536, Grade 65-45-12.

Nominal	Pipe	Couplings	Max. Working	Max.	L - (ref.)		
Size	O.D.	(Standard Units)	Pressure	Movement	Min. (Compressed) (Expanded)	Max.	Weight
in	in	Model No.	PSI	in	in	in	Lbs
mm	mm	No.	Bar	mm	mm	mm	Kgs
11/2	1.900	1N / 1NH	350	2.91	28.25	31.18	24.2
40	48.3	10	24	74	718	792	11.0
2	2.375	1N / 1NH	350	3.11	28.25	31.38	27.0
50	60.3	10	24	79	718	797	12.2
21/2	2.875	1N / 1NH	350	3.11	28.25	31.38	36.0
65	73.0	10	24	79	718	797	16.3
76.1 mm	3.000	1N / 1NH	350	3.11	28.25	31.38	36.0
76.1 mm 76.1	10	24	79	718	797	16.3	
3	3.500	1N / 1NH	350	3.11	28.25	31.38	46.0
80	88.9	10	24	79	718	797	20.9
4	4.500	1N / 1NH	350	2.09	26.50	28.58	36.5
100	114.3	7	24	53	673	726	16.6
133.0 mm	5.250	1N / 1NH	350	2.09	26.50	28.58	72.0
133.0 11111	133.0	7	24	53	673	726	32.7
165.1 mm	6.500	1N / 1NH	350	2.09	26.26	28.35	58.1
165.111111	165.1	7	24	53	667	720	26.4
6	6.625	1N / 1NH	350	2.09	26.26	28.35	91.1
150	168.3	7	24	53	667	720	41.4
8	8.625	71N / 1NH	350	1.93	28.50	30.43	159.7
200	219.1	7	24	49	724	773	72.6
10	10.750	1N / 1NH	350	3.46	33.03	36.46	257.2
250	273.0	7	24	88	839	926	116.9
12	12.750	1N / 1NH	350	3.19	33.31	36.46	373.0
300	323.9	7	24	81	846	926	169.3


^{*} Working pressure is based on connection with roll- or cut-grooved standard wall carbon steel pipe.

ADAPTER NIPPLE

Wingrou standard fitting pressure ratings conform to the ratings of Model 1GS couplings. Material: Carbon steel Sch. 40 pipe to ASTM A53 Surface Finish: Black

Nominal	Pipe	(Gr x	Gr)	(Gr x I	Bev)	(Gr x	Th)
Pipe Size	O.D.	E-E	Weight	E-E	Weight	E-E	Weight
in	in	in	Lbs	in	Lbs	in	Lbs
mm	mm	mm	Kgs	mm	Kgs	mm	Kgs
3/4	1.050	3	0.29	3	0.29	3	0.29
20	26.7	76	0.13	76	0.13	76	0.13
1	1.315	3	0.42	3	0.42	3	0.42
25	33.4	76	0.19	76	0.19	76	0.19
11/4	1.660	4	0.68	4	0.70	4	0.66
32	42.2	102	0.31	102	0.32	102	0.30
1½	1.900	4	0.82	4	0.84	4	0.79
40	48.3	102	0.37	102	0.38	102	0.36
2	2.375	4	1.10	4	1.10	4	1.10
50	60.3	102	0.50	102	0.50	102	0.50
21/2	2.875	4	1.76	4	1.76	4	1.54
65	73.0	102	0.80	102	0.80	102	0.72
76.1 mm	3.000	4	1.98	4	1.98	4	1.98
76.1 111111	76.1	102	0.90	102	0.90	102	0.90
3	3.500	4	2.40	4	2.40	4	2.20
80	88.9	102	1.10	102	1.10	102	1.00
4	4.500	6	5.17	6	5.17	6	4.84
100	114.3	152	2.35	152	2.35	152	2.20
5	5.563	6	7.26	6	7.26	6	6.60
125	141.3	152	3.30	152	3.30	152	3.00
139.7 mm	5.500	6	7.26	6	7.26	6	6.60
139.7 mm	139.7	152	3.30	152	3.30	152	3.00
6	6.625	6	9.90	6	9.90	6	9.81
150	168.3	152	4.50	152	4.50	152	4.46
105.1	6.500	6	9.46	6	9.46	6	9.81
165.1 mm	165.1	152	4.30	152	4.30	152	4.46
8	8.625	6	14.30	6	14.30		
200	219.1	152	6.50	152	6.50		
10	10.750	8	27.06	8	19.00		
250	273.0	203	12.30	203	8.66		
12	12.750	8	35.64	8	22.35		
300	323.9	203	16.20	203	10.16		

Note: Specify male thread or female thread when ordering

General Notes: Pressure Ratings for fittings conform to the working pressure of the coupling used to join the system.

Listed and or Approved: Pressures are pressure ratings for fire protection systems,


Field Joint Test: For one time only the system may be tested hydrostatically at 1½ times the maximum working pressure listed Warning: Piping systems must always be depressurized and drained before attempting disassembly and or removal of any components.

Maximum working pressure for the fire protection application, approved pressure by related authorities should be used. UL/ULC 300 Psi 2065 kPa/21bars FM 300Psi 2065kPa/21 Bars

The grooved piping method is based upon the proper preparation of grooves to receive the housings' keys. The groove serves as a recess in the pipe, which allows ample depth for secure engagement of the housings, yet ample wall thickness for full published Wingrou pressure ratings

LUBRICATION

Lubrication of the gasket with a thin coating of Lubricant compatible material on the exterior/gasket sealing lips or the coupling housings' interiors/pipe ends is essential to prevent gasket pinching. In addition, lubrication eases installation of the gasket onto the pipe end. Refer to the photos below for examples of properly and improperly lubricated gaskets.

Normal Gasket

Properly Lubricated gasket with thin coating of lubricated

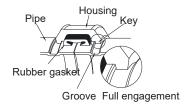
Improperly Lubricated Gasket

PIPE LENGTHS SUITABLE FOR GROOVING

The table below identifies the minimum pipe lengths that can be grooved safely by using Wingrou Grooving Tools. In addition, this table identifies the maximum pipe lengths that can be grooved without the use of a pipe stand. Pipe that exceeds the maximum lengths listed in this table requires the use of a pipe stand. Always refer to the operating and maintenance manual for the applicable grooving tool for proper setup and grooving techniques.

Pipe Lengths Suitable For Grooving

Si	ze	Length - inches/mm		
Nominal Size	Actual Pipe Outside Diameter inches/mm	Minimum	Maximum	
1	1.315	8	36	
	33.7	205	915	
1 1/4	1.660	8	36	
	42.4	205	915	
1 ½	1.900	8	36	
	48.3	205	915	
2	2.375	8	36	
	60.3	205	915	
2 ½	2.875	8	36	
	73.0	205	915	
76.1 mm	3.000	8	36	
	76.1	205	915	
3	3.500	8	36	
	88.9	205	915	
4	4.500	8	36	
	114.3	205	915	
139.7 mm	5.500	8	32	
	139.7	205	815	
5	5.563	8	32	
	141.3	205	815	
165.1 mm	6.500	10	30	
	165.1	255	765	
6	6.625	10	28	
	168.3	255	715	
8	8.625	10	24	
	219.1	255	610	
10	10.750	10	20	
	273.0	255	510	
12	12.750	12	18	
	323.9	305	460	



PIPE END PREPARATION

How to process roll-grooves

Wingrou grooved piping systems require the processing of a roll or cut groove to the pipe ends being connected. The engagement of the housing keys in the grooves is integral in providing a secure and leak-tight joint. It is essential that the grooves are properly processed for optimum joint performance.

Nominal pipe size

Wingrou couplings and fittings are identified by the nominal (IPS) pipe size in inches or nominal diameter of pipe (DN) in millimeters. Always check the actual O.D. of the pipe and fittings to be connected, as in some markets it is customary to refer to different O.D. pipes with the same nominal size.

Roll groove standard

Roll grooves must meet the specifications and requirements of ANSI/ AWWA C-606-04 For other pipe sizes not specified in this standard, refer to the applicable groove specifications shown in this catalog.

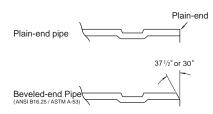
Applicable pipe wall thickness

Roll grooves are generally applicable to .375"/9.5mm thick or thinner wall carbon steel pipe, stainless steel pipe, copper tube, aluminum pipe and PVC pipe depending on the type of roll-grooving machine and roll set being used. Different wall thicknesses and sizes require the use of different roll sets as with Sch. 10 and Sch. 40 pipe as shown.

IPS Sizes -	Inches	Metric Sizes -	millimeters
Nominal size	Actual size	Nominal size	Actual size
1	1.315	25	33.4
1-1/4	1.660	32	42.2
1-1/2	1.900	40	48.3
2	2.375	50	60.3
2-1/2	2.875	65	73.0
3	3.500	80	88.9
4	4.500	100	114.3
5	5.563	125	141.3
6	6.625	150	168.3
8	8.625	200	219.1
10	10.750	250	273.0

Comparative Advantages	Threaded	Flanged	Welded	Grooved
Allows angular deflection-misalignment				1
Reclaimable, contraction or, no need for expansion joint Reclaimable, no need for union				1
Allows fast connection with valves		/		/
Allows rotation of pipe for alignment				1
No special skills required to assemble No welding slags		1		1
No weakening of pipe at joints	1			✓
No fire hazard during installation	✓			✓
		/		1
	1	/	1	1
Speed of installation	1			1
Allows prefabrication Low installation cost	✓	/		1
				/

email: info@wingrou.co.uk / info@wingrou.com



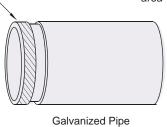
PIPE END PREPARATION

PLAIN END PIPE AND BEVELED END PIPE

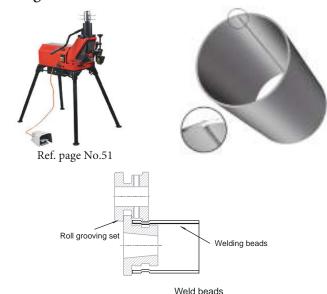
While plain-end pipe is preferred, the use of beveled end pipe is acceptable providing that the wall thickness is .375"/9.5mm or thinner and the bevel is 37-1/2 ±2-1/2° or 30° as specified in ANSI B16.25 and ASTM A-53 respectively.

ERW Pipe

ERW pipe is one of the most popular types of pipe used today. Depending on the individual pipe and manufacturer, welding beadsmay remain on the surface (inside and outside) of the pipe. Always

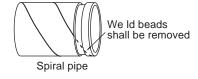

remove harmful weld beads near the pipe ends as they can causerattling of the roll grooving machine resulting in inaccurate grooves.

Check gasket seating surface

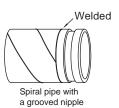

Galvanized pipe

Galvanized pipe is acceptableas long as the gasket seating surface is smooth and free from scale and imperfections that could affect gasket sealing.

Whenever you remove welding beads or projections from the sealing surface of galvanized pipe, use caution so as to not over-grind the surface. After grinding, always apply a proper rust-prevention coating to this area.



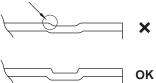
Wingrou Model No. TWG-IIAB


Spiral welded pipe

Spiral welded pipe may be used as long as the weld beads are removed from the gasket seating surface. It is also acceptable and recommended to weld a grooved end nipple to the pipe end as shown below. Whenever you remove weld beads or projections from the gasket seating surface, use caution so as to not over-grind the surface. After grinding, always apply a proper rust-prevention coating to this area

Weld Beads

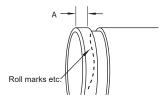
ERW pipe is one of the most popular types of pipe used today. Depending on the individual pipe and manufacturer, welding beads may remain on the surface (inside and out) of the pipe. Always remove harmful weld beads near the pipe ends as they can cause rattling of the roll grooving machine resulting in inaccurate grooves.



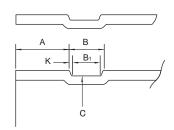
Stainless steel pipe

Stainless steel pipe

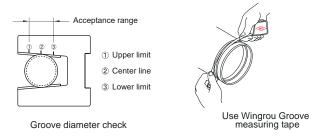
Stainless steel pipe in general is more difficult to groove than carbon steel pipe, as it is more difficult to achieve defined groove corners on stainless pipe. Grooves that are not defined and have too much of a radius could result in joint failure. Care must be taken to process grooves as defined as possible. For this reason, roll-groove machine manufacturers offer a variety of roll sets depending on the pipe material and wall thickness being grooved. Always select the correct roll set for the pipe being grooved


Corners are not sharp enough

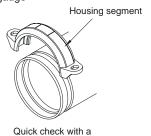
Caution: If the same roll-set that has been used for carbon steel pipe is used on stainless steel pipe, rust or scale may be transferred to the stainless steel pipe during processing of the groove. Thus we recommend the use of a separate roll set specifically for use with stainless steel pipe. Also use caution to keep roll grooved stainless steel pipe dry prior to installation.


Gasket seating surface (A)

The exterior surface of the gasket seating area shall be free from any indentations, projections, roll marks or other harmful defects such as loose paint, scale, dirt, chips, grease and rust


Roll groove profile

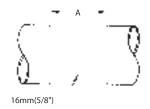
Roll grooves shouldes should be as d be as ef. To achieve optimum joint performance the "K" dimension should be as small as possible. When processing a roll groove the machine operator should manage the feed pressure of the upper roll set so as to achieve the best possible groove profile.



Groove diameter (C)

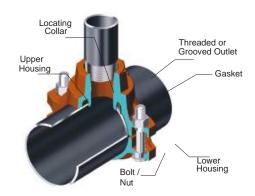
The groove diameters are average values. The groove must be of uniform depth around the entire pipe circumference. Use a VGS groove gage or groove measuring tape to check the groove diameter.

Or you can use a coupling housing for a quick check after verification of the groove dimensions. When using a housing segment as a reference always make up a sample and verify the diameter is within the acceptable range. If the housing fits well you may choose to use this as a reference gauge


housing segment

PIPE PREPARATION -HOLE CUTTING

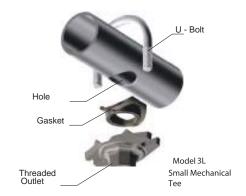
HOLE-CUTTING


The hole-cut method of pipe preparation is required when using mechanical tees, mechanical crosses, and saddle-lets. The method of pipe preparation requires the cutting or drilling of a specified hole size on the centerline of

the pipe. Always use the correct hole saw size as shown in this catalog and never use a torch for cutting a hole. After the hole has been cut all rough edges must be removed and the area within 5/8" (16mm) of the hole should be inspected to ensure a clean smooth surface, free of any indentations or projections that could affect proper gasket sealing. The area within the "A" dimension should also be inspected and must be free of dirt, scale or any imperfection that could affect proper seating or assembly of the fitting.

Wingrou Hole Cutting Machine Model No. TWK-IIIA Ref.Page No.54

Hole Size: The hole sizes are dictated by the branch size of the mechanical tee.


Table 1	ble 1 Hole Sizes for Mechanical Tees				
	Models 3GS & 3JS Mechanical Tees				
		Hole Dimensions			

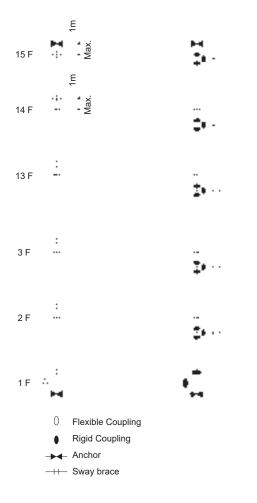
Models 3G5 & 3J5 Mechanical Lees									
Mechanical Tees	Hole Dim		Comforce Durante making						
Branch Size	Hole Saw Size	Max Dia. Allowed	Surface Preparation "A"						
15, 20, 25	38	41	89						
1/2, 3/4, 1	1-1/2	1-5/8	3-1/2						
32, 40	51*	54*	102						
1-1/4, 1-1/2	2	2-1/8	4						
50	64	67	114						
2	2-1/2	2-5/8	4-1/2						
65	70	73	121						
2-1/2	2-3/4	2-7/8	4-3/4						
80	89	92	140						
3	3-1/2	3-5/8	5-1/2						
100	114	118	165						
4	4-1/2	4-5/8	6-1/2						

^{*}See Table 1-b for exception.

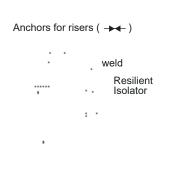
Table 2

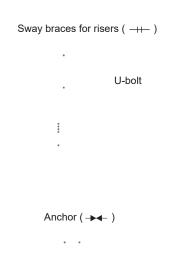
Model 3L Saddle-Let								
	Hole Dir	mensions						
Mechanical Tee Branch Size	Hole Saw Size	Max Dia. Allowed	Surface Preparation "A"					
15, 20, 25 1/2, 3/4, 1	30 1-3/16	32 1-1/4	89 3-1/2					

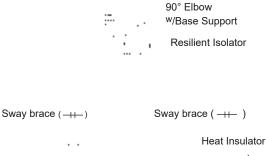
DESIGN APPLICATION ANCHORING, HANGING & SUPPORT



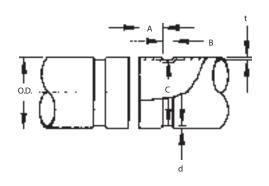
Supports for risers


In multi-story buildings, risers shall be fixed (or anchored) at the lowest level and at the top of the riser and shall be supported by riser clamps or U-bolts at each floor level to prevent the risers from swaying. If risers are braced by the penetration floors, the number of riser clamps


or U-bolts may be reduced to one at each three stories. For risers, either flexible or rigid couplings can be used as long as proper anchoring and support is provided.



- · Anchors should be sufficient to hold the weight of waterfilled pipe and pressure thrusts.
- Pipe guides (sway braces) should be such as to brace lateral movement of the system.


Wingrou is not reposible for the design of piping systems and accepts no liability for systems that are not properly designed.

USEFUL INFORMATION

Standard Roll Groove for ANSI B36.10 and Other IPS Pipe

USE WINGROU STANDARD ROLL GROOVING MACHINE MODEL No. TWG II-AB Ref. page No. 51

1		2		3	4	5	6	7	8
Nominal Size mm/in	Basic mm/in	Pipe O.D.	rance	A ±0.76 ±0.030	B ±0.76 ±0.030	C +0.00 +0.000	Min. Wall t mm/in	Groove Depth d (ref.) mm/in	Max. Allowed Flare Dia. mm/in
20	26.7	+0.25	-0.25	15.88	7.14	23.83-0.38	1.65	1.42	29.2
0.75	1.050	+0.010	-0.010	0.625	0.281	0.938-0.015	0.065	0.056	1.15
25	33.4	+0.33	-0.33	15.88	7.14	30.23-0.38	1.65	1.60	36.3
1	1.315	+0.013	-0.013	0.625	0.281	1.190-0.015	0.065	0.063	1.43
32	42.2	+0.41	-0.41	15.88	7.14	38.99-0.38	1.65	1.60	45.0
1.25	1.660	+0.016	-0.016	0.625	0.281	1.535-0.015	0.065	0.063	1.77
40	48.3	+0.48	-0.48	15.88	7.14	45.09-0.38	1.65	1.60	51.1
1.5	1.900	+0.019	-0.019	0.625	0.281	1.775-0.015	0.065	0.063	2.01
50	60.3	+0.61	-0.61	15.88	8.74	57.15-0.38	1.65	1.60	63.0
2	2.375	+0.024	-0.024	0.625	0.344	2.250-0.015	0.065	0.063	2.48
65	73.0	+0.74	-0.74	15.88	8.74	69.09-0.46	2.11	1.98	75.7
2.5	2.875	+0.029	-0.029	0.625	0.344	2.720-0.018	0.083	0.078	2.98
80	88.9	+0.89	-0.79	15.88	8.74	84.94-0.46	2.11	1.98	91.4
3	3.500	+0.035	-0.31	0.625	0.344	3.344-0.018	0.083	0.078	3.60
90	101.6	+1.02	-0.79	15.88	8.74	97.38-0.51	2.11	2.11	104.1
3.5	4.000	+0.040	-0.031	0.625	0.344	38.34-0.020	0.083	0.083	4.10
100	114.3	+1.14	-0.79	15.88	8.74	110.08-0.51	2.11	2.11	116.8
4	4.500	+0.045	-0.031	0.625	0.344	4.334-0.020	0.083	0.083	4.60
125	141.3	+1.42	-0.79	15.88	8.74	137.03-0.56	2.77	2.11	143.8
5	5.563	+0.056	0.031	0.625	0.344	5.395-0.022	0.109	0.083	5.66
150	168.3	+1.60	-0.79	15.88	8.74	163.96-0.56	2.77	2.16	170.9
6	6.625	+0.063	0.031	0.625	0.344	6.455-0.022	0.109	0.085	6.73
200	219.1	+1.60	-0.79	19.05	11.91	214.40-0.64	2.77	2.34	223.5
8	8.625	+0.063	-0.031	0.750	0.469	8.441-0.025	0.109	0.092	8.80
250	273.0	+1.60	-0.79	19.05	11.91	268.27-0.69	3.40	2.39	277.4
10	10.750	+0.063	0.031	0.750	0.469	10.562-0.027	0.134	0.094	10.92

Pipe OD (Column 2):

Maximum allowable tolerances from square cut ends is 0.03" for sizes up to 3 1/2"; 0.045" for 4" thru 6"; and 0.060" for sizes 8" and above. Gasket Seating Surface (Column 3):

The gasket seating surface shall be free from deep scores, marks, or ridges that could prevent a positive seal.

Groove Width (Column 4):

Groove width is to be measured between vertical flanks of the groove side walls.

Groove Diameter (Column 5):

The 'C' diameters are average values. The groove must be of uniform depth around the entire pipe circumference.

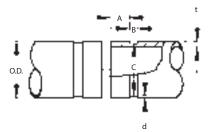
Minimum Wall Thickness (Column 6):

The 't' is the minimum allowable wall thickness that may be roll-grooved.

Groove Depth (Column 7):

The 'd' is for reference use only. The groove dimension shall be determined by the groove diameter 'C'.

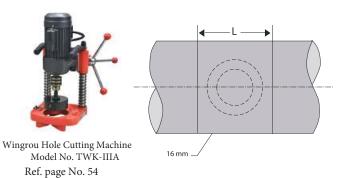
Flare Diameter (Column 8):


The pipe end that may flare when the groove is rolled shall be within this limit when measured at the extreme end of the pipe.

USEFUL INFORMATION

Standard Cut Groove Specifications for IPS / BS / ISO / JIS Pipe

1		2		3	. 4	. 5	6	. 7
Nominal Size mm/in	Basic mm/in	Pipe O.D. Tole	rance	A ±0.79 ±0.031	B ±0.79 ±0.031	C +0.00 +0.000	Min. Wall t mm/in	Groove Depth d (ref.) mm/in
20	26.7	+0.25	-0.25	15.88	7.95	23.83-0.38	2.87	1.42
0.75	1.050	+0.010	-0.010	0.625	0.313	0.938-0.015	0.113	0.056
25	33.4	+0.33	-0.33	15.88	7.95	30.23-0.38	3.38	1.60
1	1.315	+0.013	-0.013	0.625	0.313	1.190-0.015	0.133	0.063
32	42.2	+0.41	-0.41	15.88	7.95	38.99-0.38	3.56	1.60
1.25	1.660	+0.016	-0.016	0.625	0.313	1.535-0.015	0.140	0.063
40	48.3	+0.48	-0.48	15.88	7.95	45.09-0.38	3.68	1.60
1.5	1.900	+0.019	-0.019	0.625	0.313	1.775-0.015	0.145	0.063
50	60.3	+0.61	-0.61	15.88	7.95	57.15-0.38	3.91	1.60
2	2.375	+0.024	-0.024	0.625	0.313	2.250-0.015	0.154	0.063
65	73.0	+0.74	-0.74	15.88	7.95	69.09-0.46	4.78	1.98
2.5	2.875	+0.029	-0.029	0.625	0.313	2.720-0.018	0.188	0.078
65 	76.1 	+0.76	-0.76 	15.88	7.95 	72.26-0.46	4.78 	1.93
80	88.9	+0.89	-0.79	15.88	7.95	84.94-0.46	4.78	1.98
	3.500	+0.035	-0.031	0.625	0.313	3.344-0.018	0.188	0.078
90	101.6	+1.02	-0.79	15.88	7.95	97.38-0.51	4.78	1.98
3.5	4.000	+0.040	-0.031	0.625	0.313	3.834-0.020	0.188	0.078
100	114.3	+1.14	-0.79	15.88	9.53	110.08-0.51	5.16	2.11
4	4.500	+0.045	-0.031	0.625	0.375	4.334-0.020	0.203	0.083
125	141.3	+1.42	-0.79	15.88	9.53	137.03-0.56	5.16	2.11
5	5.563	-0.056	-0.031	0.625	0.375	5.395-0.022	0.203	0.083
150 	165.1	+1.60 	-0.79 	15.88 	9.53 	160.80-0.56	5.56 	2.16
150	168.3	+1.60	-0.79	15.88	9.53	163.96-0.56	5.56	2.16
6	6.625	+0.063	-0.031	0.625	0.375	6.455-0.022	0.219	0.085
200	219.1	+1.60	-0.79	19.05	11.13	214.40-0.64	6.05	2.34
8	8.625	+0.063	-0.031	0.750	0.438	8.441-0.025	0.238	0.092
250	273.0	+1.60	-0.79	19.05	12.70	268.27-0.69	6.35	2.39
10	10.750	+0.063	-0.031	0.750	0.500	10.562-0.027	0.250	0.094


Gasket Seating Surface (Column 3): The gasket seating surface shall be free from deep scores, marks, or ridges that could prevent a positive seal. Groove Width (Column 4): Groove width is to be measured between vertical flanks of the groove side walls. Groove Diameter (Column 5): The 'C' diameters are average values. The groove must be of uniform depth around the entire pipe circumference. Minimum Wall Thickness (Column 6): The 't' is the minimum allowable wall thickness that may be cut-grooved. Groove Depth (Column 7): The 'd' is for reference use only. The groove dimension shall be determined by the groove diameter 'C'.

PIERCING THE TUBE

When it is necessary to perform a deviation, the hole produced should comply with the tolerence specified below and be correctly situated on the central line of the tube. In the section of length L and in an area of 16mm around the hole, the surface must be perfectlyclean and smooth so that the gasket is perfectly seated. Never flame drill

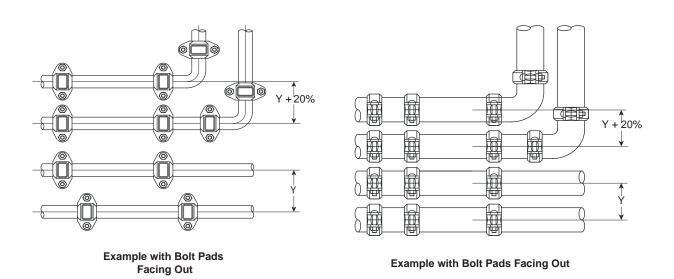
3L (Branch for sprinkler)

		Hole to		
Main tube	Required branch Nominal diameter Maximum diameter (mm - Inches) (mm - Inches)			Length L (mm)
DN32 (1 1/4")	DN15 (1/2" - 21,3 mm)	30.5 - 1.20	31.6 - 1.24	89
$(\Phi \text{ ext} = 42.4 \text{ mm})$	DN.20 (3/4" - 26,9 MM)	30.5 - 1.20	31.6 - 1.24	89
(+ cxc = 12, 111111)	DN25 (1" - 33,4 mm)	30.5 - 1.20	31.6 - 1.24	89
DN40 (1 1/2")	DN15 (1/2" - 21,3 mm)	30.5 - 1.20	31.6 - 1.24	89
$(\Phi \text{ ext} = 48.3 \text{ mm})$	DN20 (3/4" - 26,9 MM)	30.5 - 1.20	31.6 - 1.24	89
(1 0/10 10/5 11111)	DN25 (1" - 33,4 mm)	30.5 - 1.20	31.6 - 1.24	89
DN50 (2")	DN15 (1/2" - 21,3 mm)	30.5 - 1.20	31.6 - 1.24	89
$(\Phi \text{ ext} = 60,3 \text{ mm})$	DN20 (3/4" - 26,9 MM)	30.5 - 1.20	31.6 - 1.24	89
(,	DN25 (1" - 33,4 mm)	30.5 - 1.20	31.6 - 1.24	89
DN65 (2 1/2")	DN15 (1/2" - 21,3 mm)	30.5 - 1.20	31.6 - 1.24	89
$(\Phi \text{ ext} = 76.1 \text{ mm})$	DN20 (3/4" - 26,9 MM)	30.5 - 1.20	31.6 - 1.24	89
, , ,	DN25 (1" - 33,4 mm)	30.5 - 1.20	31.6 - 1.24	89

3J and 3G (Mechanical tee threaded and grooved)

		Hole to			
Main tube	Required branch	Nominal diameter (mm -Inches)	Maximum diameter (mm - Inches)	Length L (mm)	
	DN15 (1/2" - 21,3 mm)	38.0 -1.50	39.6-1.16	89	
D1150 (011)	DN.20 (3/4" - 26,9 MM)	38.0 -1.50	39.6 - 1. l 6	89	
DN50 (2") (Φ ext = 60,3 mm)	DN25 (1" - 33,4 mm)	38.0 -1.50	39.6 - 1. l 6	89	
	DN32 (11/4" - 42,4 mm)	44.5 -1.75	46.6 -1.83	102	
	DN40 (11/2" - 48,3 MM)	44.5 -1.75	46.6 -1.83	102	
	DN15 (1/2" - 21,3 mm)	38.0 -1.50	39.6 - 1. l 6	89	
DN65 (2 1/2")	DN20 (3/4" - 26,9 MM)	38.0 -1.50	39.6 - 1. l 6	89	
$(\Phi \text{ ext} = 76,1 \text{ mm})$	DN25 (1" - 33,4 mm)	38.0 -1.50	39.6 - 1. l 6	89	
(DN32 (11/4" - 42,4 mm)	51.0 -2.00	52.6 - 2.07	102	
	DN40 (11/2" - 48,3 MM)	51.0 -2.00	52.6 - 2.07	102	
<u> </u>	DN15 (1/2" - 21,3 mm)	38.0 -1.50	39.6 - 1. l 6	89	
	DN20 (3/4" - 26,9 MM)	38.0 -1.50	39.6 - 1. l 6	89	
DN80 (3")	DN25 (1" - 33,4 mm)	38.0 -1.50	39.6 - 1. l 6	89	
(Φ ext = 88,9 mm)	DN32 (11/4" - 42,4 mm)	51.0 -2.00	52.6 - 2.07	102	
	DN40 (11/2" - 48,3 MM)	51.0 - 2.00	52.6 - 2.07	102	
	DN50 (2" - 60,3 mm)	64.0 -2.50	61.6 -2.18	114	
	DN15 (1/2" - 21,3 mm)	38.0 -1.50	39.6 - 1. l 6	89	
	DN20 (3/4" - 26,9 MM)	38.0 - 1.50	39.6 - 1. l 6	89	
DN100 (4")	DN25 (1" - 33,4 mm)	38.0 - 1.50	39.6 - 1. l 6	89	
(Φ ext = 114,3 mm)	DN32 (11/4" - 42,4 mm)	51.0 -2.00	52.6 - 2.07	102	
(Ψ cxt = 114,3 mm)	DN40 (11/2" - 48,3 MM)	51.0 -2.00	52.6 - 2.07	102	
	DN50 (2" - 60,3 mm)	64.0 -2.50	61.6 -2.18	114	
	DN65 (21/2" - 76,1mm)	70.0 -2.75	71.6 -2.82	120	
	DN80 (3" - 88,9 MM)	89.0 -3.50	90.6 -3.17	140	
D11125 (51)	DN32 (11/4" - 42,4 mm)	51.0 -2.00	52.6 - 2.07	102	
DN125 (5")	DN40 (11/2" - 48,3 MM)	51.0 -2.00	52.6 - 2.07	102	
$(\Phi \text{ ext} = 139,7 \text{ mm})$	DN50 (2" - 60,3 mm)	64.0 -2.50	6l.6 - 2.l8	114	
	DN65 (21/2" - 76,1mm)	70.0 - 2.75	71.6 -2.82	120	
DN150 (61/2" OD)	DN50 (2" - 60,3 mm)	64.0 - 2.50	6l.6 - 2.l8	114	
(Φ ext = 165,1 mm)	DN65 (21/2" - 76,1mm)	70.0 -2.75	71.6 -2.82	120	
	DN32 (11/4" - 42,4 mm)	51.0 -2.00	52.6 -2.07	102	
DN150 (6")	DN40 (11/2" - 48,3 MM)	51.0 -2.00	52.6 -2.07	102	
(Φ ext = 168,3 mm)	DN50 (2" - 60,3 mm)	64.0 -2.50	61.6 -2.18	114	
	DN65 (21/2" - 76,1mm)	70.0 -2.75	71.6 -2.82	120	
	DN80 (3" - 88,9 MM)	89.0 -3.50	90.6 -3.17	140	
	DN100 (4" - 114,3 mm)	114.0 -4.50	115.6 -4.55	165	
DN200 (8")	DN50 (2" - 60,3 mm)	64.0 -2.50	6l.6 - 2.l8	114	
(Φ ext = 219,1 mm)					

SPACE REQUIREMENTS FOR GROOVED PIPING SYSTEMS



SPACING REQUIREMENTS FOR GROOVED PIPING SYSTEMS

Since the grooved piping method incorporates externally mounted housings, consideration must be given to external dimensions beyond the pipe OD.

NOTE: Allowance for insulation, when necessary, is not included in the following examples.


Recommended Minimum pipe Spacing

Illustrations are exaggerated for clarity

To allow for easy installation, insulation, and maintenance, consideration must be given to proper spacing between pipelines. Since Wingrou grooved pipe couplings are externally mounted housings that contain bolt pads, allow enough access space to tighten the bolts. In addition, provide enough space to prevent interference between piping and adjacent couplings.

The pipe centerline must be spaced with the width of the coupling housings ("Y" dimension) for systems where couplings are staggered. Add an additional 20% to the width (Y) when couplings are inline, as shown above.

NOTE: The "Y" dimension is the maximum dimension across the coupling. Bolt pads can be positioned in any orientation to provide adequate clearance if the orientation shown causes interference with other system components.

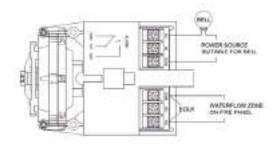
External Clearance Allowance

When installing grooved piping systems in confined areas, such as a pipe shaft, a tunnel, a narrow trench, or when joining riser pipe and dropping it through riser holes, consideration must be given to the external clearance of the housings. This clearance must be slightly greater than the "Y" dimension of the widest point. The necessary clearance will vary depending upon installation procedures, the proximity of other pipes, and other factors.

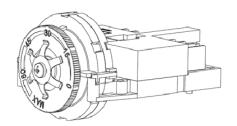
WINGROU WATER FLOW SWITCH

Engineering SPecifications

The Wingrou water flow indicators shall be installed on system piping as designated on the drawing and/or as specified herein. Water flow indicators shall mount on any clear pipe span of the appropriate normal size, either a horizontal or vertical pipe. The indicators shall have a sensitivity in the range of 4-10 gallons per minute and a static pressure rating up to 450psi for 2"-8" (50mm thru 200mm) pipes. The indicator shall respond to water flow in the specified direction after a preset time delay that is field adjustable. The retard structure shall be a sealed mechanical pneumatic unit with visual time delay adjustment.


Note: Cover material is Aluminum, alternative Plastic Cover.

WG

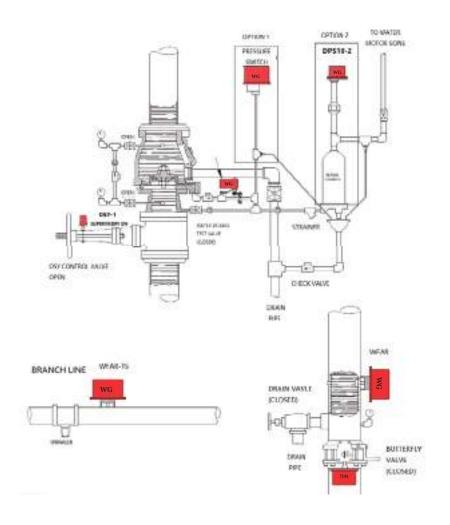

Features and Specifications

Working Pressure	Max3.1Mpa (450psi)	Mpa (450psi)	
Sensitivity	15.0-37.5L/min (4-10GPM)	Maximum Surge 5.	5m/s (18FPS)
Contact Rating	Two sets of SPDT 10.1A@125/250VAC 2 A @ 2 4 V D C	Micro-switch 100% sy	nchronization
Enclosure Rating	NEMA 4- suitable for indoor/outdoor	Tamper Device S	pecial tamper screws to prevent disassembly
Compatible Pipe	Steel pipe, schedule 10 through 40	Standards GB513	5.7-2018 & FM1042-2016&UL346

Typical Electrical Connections and Time Delay Adjustment

Figure Figure and Size

Retard Structure can be set from "0" to "MAX" position, delay time can be set from 0~90secs


Model	Description	Pipe Size	Hole Size
RF-2	Vane-Type Water flow indicator	50mm (2")	31.8mm(1-1/4")
RF-2.5	Vane-Type Water flow indicator	65mm (2.5")	31.8mm(1-1/4")
RF-3	Vane-Type Water flow indicator	80mm (3")	50.8mm(2")
RF-4	Vane-Type Water flow indicator	100mm (4")	50.8mm(2")
RF-6	Vane-Type Water flow indicator	150mm (6")	50.8mm(2")
RF-8 (Φ ext = 219,1	Vane-Type Water flow indicator	200mm (8")	50.8mm(2")

WINGROU WATER FLOW SWITCH

Wingrou Water Flow Switch

Wingrou series water flow indicators are an vane-type & saddle water indicator with time delay function, which can suit for pipe schedules 10 through 40, size 2" through 8"(50mm to 200mm). The external structure is easy to install and maintain. Paddles are made from a novel polymer engineering material, which enhances the sensitivity and stability of the water flow indicator. The delay structure is convenient for field adjustment or replacement.

DPS10/40 series pressure switches design structure is reliable, performance is stable, the action pressure factory setting is:5~7psi(0.035~0.05MPa), when install on the wet alarm valve, there is no false signal.

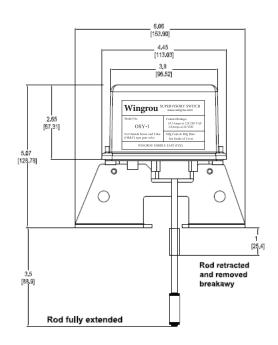
WINGROU SUPERVISORY SWITCH

Wingrou OSY-01

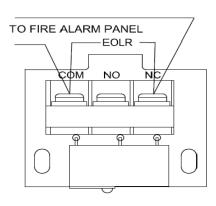
Wingrou

Engineering Specifications

The OSY-1 supervisory switch is used to monitor the open position of an OS&Y (outside screw and yoke) type gate valve. OSY-1 supervisory switch shall be installed on each valve as designated on the drawing and/or as specified herein, Switches shall be mounted so as not to interfere with the normal operation of the valve and shall be adjusted to operate with two revolutions of the valve control or when the stem has moved no more than one-fifth of the distance from its normal


position.

Note: Cover material is Alumi num, alternative Plastic Cover.


Endt Spescifications

Dimensions(mm)

Field Typical Electrical Connections

Model and Size Wingrou OSY-01

Model	Description	Contact
OSY-1	Supervisory Switch for OSY Gate Valve	one set of SPDT

ROLL GROOVING MACHINE

WINGROOVER 2 - 12"

Advance electro-hydraulic rolling groover for steel pipes \emptyset 2-12 (60-325 mm) for rolling of grooves on thin-walled and standard steel pipes

Product Pro ile

Sprinkler systems, installations, larger heading units, industrial use and mining

- Designed for field roll grooving of 8-24 (219-630 mm) pipe
- Sturdy hydraulic-pump with precisely formed grips for ideal handling
- Compact and very stable machine design
- Powerful yet quiet motor
- Fine adjustment for groove depth and regulation

Pipe Preparation Tools

Field Fabrication

Working range Pipe wall-thickness Weight Dimensions Current

: 2 - 12" (60-325 mm) : 10 mm

Frequency Speed : 163 kg
: 78x70x92(cm)

: Single phase Hz(110/120/220/230/240V:

50/60HZ

: 23 rpm

Fig. Diameter measuring tape

Model	√ kg	
WINGROOVER 2-12" Roll	128.0	1
Groove set 2 - 21/2" Roll	1.5	1
Groove set 3 - 6" Roll	2.2	1
Groove set 8 - 12"	2.4	1

Scope of delivery: WINGROOVER machine 2 - 12", roll groove set 2-1/2roll groove set 3-6", roll groove set 8-12", pipe support stand, tools for installation, diameter measuring tape, installation and instructional CD

Model	√ kg √	
Top Roll Groove set 2 - 6" Top	1.5	1
Roll Groove set 8 -12 Pipe	2.2	1
Support Stand Diameter	29	1
measuring tape	0.05	1

ROLL GROOVING MACHINE

Pipe Preparation Tools

Field Fabrication

WINGROOVER 8 - 24"

Advance electro-hydraulic rolling groover for steel pipes \varnothing 8-24 (219-630 mm) for rolling of grooves on thin-walled and standard steel pipes

Product Profile

Sprinkler systems, installations, larger heading units, industrial use and mining

weDesigned for field roll grooving of 8-24 (219-630 mm) pipe

- Sturdy hydraulic-pump with precisely formed grips fori deal handling
- Compact and very stable machine design
- Powerful yet quiet motor
- Fine adjustment for groove depth and regulation

Working Range : 8 - 24" (219-630 mm)

Pipe Wall-thickness: 13 mm
Weight: 340 kg
Dimensions: 102x75x47 (cm)

Current Frequency: Three phase Hz(220/380/415/440V: 50/60HZ

Speed : 50 rpm

Stabilizer for large pipes

No slipping of the pipe

Model	√ kg √	
WINGROOVER 8-24"	300	1
Roll Groove set 8-14"	9	1
Roll Groove set 16-18"	8.675	1
Roll Groove set 20-24"	8 515	1

Scope of delivery: WINGROOVER machine 8-24 roll groove set 8-14 roll groove set 16-18", roll groove set 20-24", pipe support stand, tools for installation, diameter measuring tape, installation and instructional CD

Model	√ kg √	
Top Roll Groove set 8-22"	1.27	1
Top Roll Groove set 24	1.32	1
Pipe Support Stand	55	1

PIPE CUTTING MACHINE

PIPE MACHINERY TWQ-IIIA PIPE CUTTING MACHINE

Pipe Preparation Tools

Field Fabrication

Technical Data

Product Features

- The Construction Allows Quick Change of Pipe Diameters
- Machine Can Adjust From DN50 to DN300 Pipe in Seconds
- Alloy Steel Blade Allows Hundreds of Cuts Between Sharpening
- Pipe Can be Moved Directly From the Pipe Cutter to the Roll Groove
 Machine Without Any Further End Preparation
- For Onsite or Workshop Use
- Easy Move Wheel-Handle
- Built in Wheel and Handle For Easy Transport

- Code: WG-TWQ-IIIA
- Pipe Diameter: DN50-DN300
- Max Wall Thickness: Heavy Wall Pipe 10mm
- Output RPM: 23 rpm
- Motor: Single Phase Induction Motor-
- Power: 240V 1100 WFrequency: 50-60 HzNet Weight: 108 kg
- Dimension: 720 x 660 x 970mm

email: info@wingrou.co.uk / info@wingrou.com

HOLE CUTTING MACHINE

WINGROU TWK-111A HOLE CUTTING MACHINE

Pipe Preparation Tools
Field Fabrication

Product Description

Technical Data

FEATURES

• This machine is designed for drilling holes up to 114mmon a steel pipe.

• It is equipped with a high-performance low-noise gear reduction motor to offer high torque.

Model # TWK-111A

Code: H-TWK-111A

Capacity: DN25 –DN100 Holes

• Max. Hole Diameter: 114mm

• Max. Wall Thickness:

Output RPM: 38 RPMGross Weight: 26kg

• Packaging Size: 320x320x640 mm

WARRANTY

General

These terms and conditions shall control with respect to any purchase order or sale of seller's products. No waiver, alteration or modification of these terms and conditions wheather on buyer's purchase order or otherwise shall be valid unless the waiver, alteration or modification is specifically accepted in writing and signed by authorized representative of seller

Delivery

Seller will make every effort to complete delivery of products as indicated on seller's acceptance of an order, but seller assumes no responsibility or liability, and will accept no back charge, for loss or damage due to delay or inability to deliver caused by acts of God, war labor difficulties, accident, delays, or carriers, by contractors or suppliers, inability to obtain materials, shortages of fuel and energy, or any other causes of any kind whatsoever beyond the control of seller. Seller may terminate any contract of sale of its products without liability of any nature, by written notice to buyer, in the event that the delay in the delivery or performance resulting from any of the aforesaid cause shall continue for a period of sixty(60)days. Under no circumstance shall seller be liable for any special or consequential damage or for loss, damage, or expence (whether or not based on negligence) directly or indirectly arising from delays or failure to give notice of delay.

Warranty

We warrant all products to be free from defects in materials and workmanship under normal conditions of use and service. Our obligation under this warranty is limited to repairing or replacing at our option at factory any products which shall within one year after delivery to original buyers, be returned with transportation charges prepaid, and which our examination shall show to our satisfaction to have been defective.

THIS WARRANT IS MADE EXPRESSLY IN LIEU OF ANY OTHER WARRANTIES, EXPRESS OR IMPLIED INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITTNESS FOR A PARTICULAR PURPOSE. THE BUYER'S SOLE AND EXCLUSIVE REMEDY SHALL BE FOR THE REPAIR OR REPLACEMENT OF DEFECTIVE PRODUCTS AS PROVIDED HEREIN. THE BUYER AGREES THAT NO OTHER REMEDY (INCLUDING, BUT NOT LIMITED TO, INCIDENTAL OR CONSEQUENTIAL DAMAGES FOR LOST PROFITS, LOST SALES,INJURY TO PERSON OR PROPERTY OR ANY OTHER INCIDENTAL OR CONSEQUENTIAL LOSS) SHALL BE AVAILABLE TO HIM.

Seller neither assumes nor authorizes any person to assume for it any other liability in connection with the sales of such products. This warranty shall not apply to any product which has been subject to missuse. negligence or accident, which has been repaired or altered in any manner outside of the factory or which has been used in a manner contrary to seller instructions or recommendations. seller shall not be responsible for delivery error and design error due to inaccurate or incomplete information supplied by Buyer or its representatives.

Liability

Seller will not be liable for any loss.damage,cost of repairs,inciental or consequential damage of any kind, whether based upon warranty(except for the obligation accepted by seller under "warranty" above), contract or negligence arising in connection with the design, manufacture, sale, use or repair of the products or of the engineering designs supplied to buyer.

Returns

Seller cannot accept return of any products unless its written permission has been first obtained, in which case same be credited subject to the following (a) All materials returned must, on its arrival at seller's plant, be found to be in first-class condition; if not, cost of putting in saleable condition will be deducted from credit memoranda;(b) A handling charge deduction of twenty five(25%) will be made from aal shipments.

Shipments

All products sent out will be carefully examined, counted and packed. The cost any special packing or special handling caused by Buyer's requirements or request shall be added to the amount of the order. No claim for shortages will be allowed unless made in writting within ten(10) days of receipt of shipment. Claim for products damaged or lost in transit should be made on the carrier, seller's reponsibility ceases, and title asses on delivery to the carrier.

HOLE CUTTING MACHINE

INSTALLATION INSTRUCTIONS

MECHANICAL GROOVED COUPLINGS STYLE No. 1GS,1N,1NH

- 1. Remove one nut and bolt from housing loosen the other nu until it is flush with the end of the bolt. Remove the gasket from the housing.
- 2. Check suitability of gasket for intended service and apply a thin coat of silicone or other compatible pipe lubricant to gasket lips and outside of the gasket, if the gasket surface does not have lubricity
- 3. Insert ans push the gasket over one of the grooved ends of the two pipes to be loined. Gasket lip should not overhang pipe end.
- 4. Align and bring the pipes end together and side gasket into position entered between the grooves on each pipe. Gasket should should not extend into groove on either pipe.
- 5. Place housings over gasket and apply pressure by hands to engage the keys into the grooves. Insert bolt and apply nuts finger tight. Make sure on Style 1GS the tonge and groove match to avoid product failure.
- Tighten nuts alternately and equally until housing bolts pads are firmly together metal-to-metal. Uneven tightening will pinch the gasket.On style 1GS there may be slight gap at bolt pads.

WARNING: DO NOT MAKE ADJUSTMENT TO GROOVED PRODUCTS WHILE THE PIPING SYSTEM IS UNDER PRESSURE.

REDUCING FLEXIBLE COUPLING STYLE No. 1NR

- 1. Remove nutS and bolt from housing. Remove the gasket from the housing.
- 2. Check suitability of gasket for intended service and apply a thin coat of silicone or other compatible pipe lubricant to gasket lips and outside of the gasket, if the gasket surface does not have lubricity.
- 3. Insert the large opening of the gasket over the large pipe ends until the steel washer touches the pipe ends
- 4. Align the centerline and insert the smaller pipe end into the gasket. A slight twisting motion of the pipe eases assembly. Stell washer will prevent the movement of smaller pipe inside the large pipe.
- 5. position the housing halves over the gasket, making sure the housing keys engage the grooves on each pipe. Proper lubrication of the interor of the housing and exterior of the gasket is important to prevent gasket pinching.
- 6. insert the bolt and start the nuts manually. Tighten the nuts uniformly alternating side until housing bolts pads meet firmly metal-to-metal. Uneven the tightening will pinch the gasket

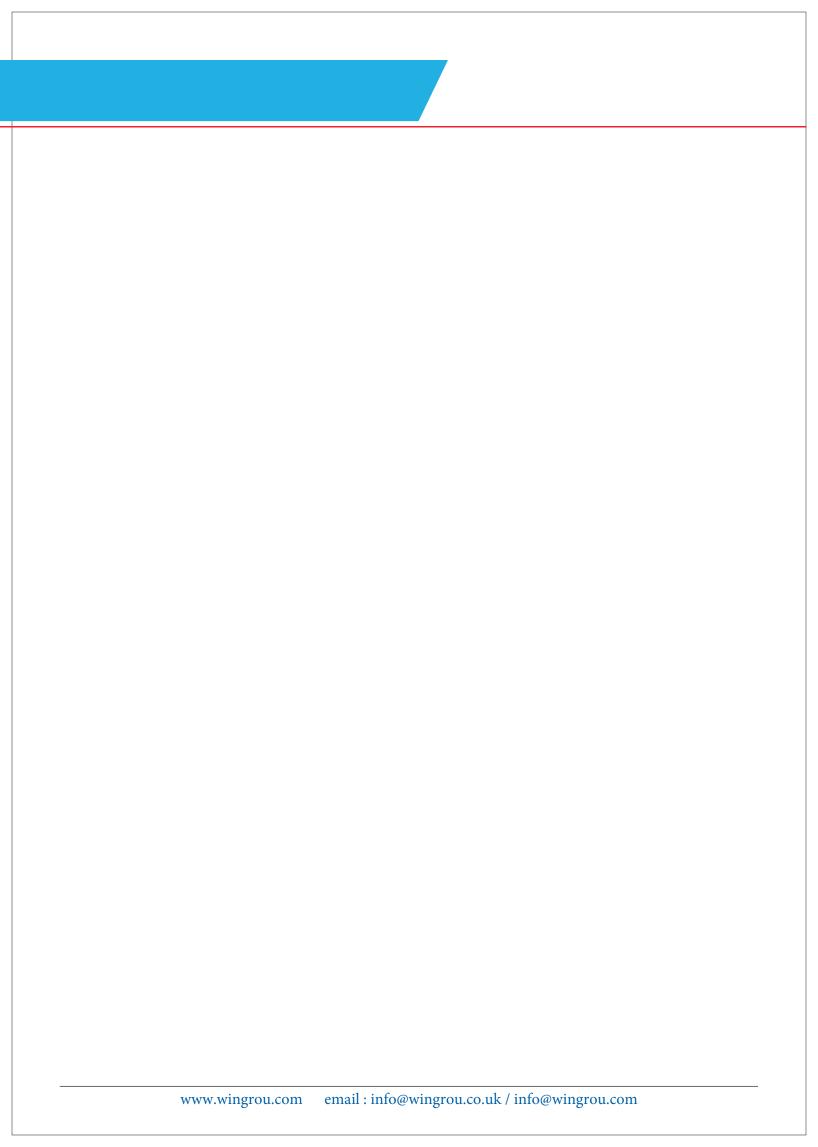
MECHANICAL BRANCH OUTLET STYLE No. 3G, 3J, 3L

- 1.. Cut or drill in pipe Hole diameter for each mechanical branch out-let is listed on the chart pertaining to the product Hole must be drilled on the center-line of the pipe. Remove the cut piece and cutting chips. make sure that the pipe surface within 7/8 " of the hole is clean, smooth and free of indentations or projections which would afect proper sealing.
- 2. Remove one nut and bolt from housing loosen the other nut until it is flush with the end of the bolt. Remove the tape and lift gasket.
- 3. Check suitability of gasket for intended service. Reposition the gasket into the housing using alignment tabs on the sides for proper positioning.
- 4. Rotate the lower housing approximately 90 Degree away from the upper or outlet section. Place the upper onto the surface of the pipe in line with the outlet hole prepared per instructions and rotate the lower section around the pipe and close the two halve.
- 5. insert bolt in its hole and finger tighten both nuts, making sure that the locating collar is in the outlet hole. Also make sure that the positioning lugs aligned properly.
- 6 tighten nuts uniformly until the gasket pocket area of the upper housing is in the complete contact with pipe surface and the assembly is rigid. Nuts must be tightened with even gaps between bolt pads. Torgue in excess of what is recommended is not desirable.

SPLIT FLANGE ADAPTER STYLE No. 321

- 1. Open the flange Adapter and place hinged flange around the grooved pipe end with the circular key section locating into the groove.
- 2. Insert a standard bolt through the mating holes of the flange to secure the flange in the groove.
- 3. Check suitability of gasket for intended service and apply a thin coat of silicone or other compatible pipe lubricant to gasket lips and outside of the gasket, if the gasket surface does not have lubricity
- $\ensuremath{\mathsf{4}}.$ Press the gasket into cavity between the pipe OD, and flange recess.
- 5. Insert a standard flange bolt in the hing hole opposite the lock bolt and direct the two bolt assembly to mate with the flangeof the device to be joined.
- 6. Add ghe remaining standard flange bolt and tighten all nuts evenly until faces contact firmly or bolt attain recommended joint torque values.

WARNING: DO NOT MAKE ADJUSTMENT TO GROOVED PRODUCTS WHILE THE PIPING SYSTEM IS UNDER PRESSURE.


Depressurize and drain the piping system before attempting to install, remove, or adjust any piping products. Wear safety glasses, hardhat, and foot protection.

Wingrou is not reposible for the design of piping systems and accepts no liability for systems that are not properly designed.

	Notes	
		al Informatio

Notes			
			General Informatio

For more info, please contact us at:

Wingrou Pipe Technology Co.

The Beehive city place, Gatwick, West Sussex, RH6 OPA, United Kingdom web: www.wingrou.com Email:- info@wingrou.co.uk info@wingrou.com